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CHARACTERIZATION OF METAL MATRIX COMPOSITES

ABSTRACT

Experimental methods were developed, adapted and applied to the characterizatxon

of a metal matrix composite system, namely, silicon carbide/aluminum (SCS-

2/6061 Al ), and its constituents. The silicon carbide fiber was characterized by

determining its modulus, strength and coefficient of thermal expansion. The

aluminum matrix was characterized thermomechanically up to 399 ° C (750 ° F) at

two strain rates. The unidirectional SiC/A/ composite was chartacterized

mechanically under longitudinal, transverse and in-plane shear loading up to 399 ° C

(750 ° F). Isothermal and non-isothermal creep behavior was also measured. The

applicability of a proposed set of multifactor thermoviscoplastic nonlinear

constitutive relations and a computer code was investigated. Agreement between

predictions and experimental results was shown in a few cases. The elastoplastic

thermomechanical behavior of the composite was also described by a number of

new analytical models developed or adapted for the material system studied. These

models include the rule of mixtures, composite cylinder model with various

thermoelastoplastic analyses and a model based on average field theory. In most

cases satisfactory agreement was demonstrated between analytical predictions and

experimental results for the cases of stress-strain behavior and thermal deformation

behavior at different temperatures. In addition, some models yielded detailed three-

dimensional stress distributions in the constituents within the composite.
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1. INTRODUCTION

Energy producing, transportation and space systems expose materials to

high temperature environments. For example, the skin temperature of the space

shuttle reaches 1100 ° C (2000 ° F); skin temperatures of future aircraft are expected

to reach 1650 ° C (3000 ° F). In addition, precision space structures which must

have strict tolerances on dimensional control require structural materials that

possess a high specific stiffness and low coefficient of thermal expansion (CTE).

The design of structures and systems capable of operating at these elevated

temperatures and possessing exceptional stability across a wide range of

temperatures poses great challenges to materials and structures engineers. The

development of efficient systems has been hampered up to now, because the only

materials capable of withstanding these high temperatures have been ceramic

materials with their inherent limitations of brittleness, low strain to failure, low

tensile strength, and low fracture toughness. Recent and current developments in

materials science and processing technology are overcoming these limitations with

the introduction of high temperature composites, such as metal-matrix, ceramic-

matrix and carbon-carbon composites.

Advanced metal-metrix composite (MMC's) possess some unique

mechanical and physical characteristics which make them highly desirable for

specific applications. In addition to the advantages afforded by the anisotropic

characteristics common to all composite materials, they have many additional

advantages. In general, they exhibit high shear strength and shear modulus, high

transverse tensile strength, excellent stability over a wide temperature range, good

strength retention, excellent fatigue and creep properties, and high impact strength.

In addition, they offer many advantages over polymer-matrix composites, such as

higher electrical and thermal conductivities, better radiation resistance, and no

outgassing. They are easily formed and machined, easily repaired, and amenable to



typical aerospacesheetmetaldesignandfabrication. Already,methodshavebeen

developed for producing extra-strong lightweight metal-matrix composite

structures. Superiordimensionalstability is also possible,as well astailored

thermal expansionrateswhich match thoseof mating materials. All of this

potentially can be done at a cost comparable to that of the unreinforced metal.

Even the simplest of fillers can do remarkable things for metals. One of the

most common examples is that of 6061 aluminum alloy reinforced with 40% by

volume particulate carbide. Compared with the unreinforced metal the modulus of

elasticity increases from 10 to 21 Msi. Ultimate strength increases from 42 Ksi to

65 Ksi. Wear resistance improves significantly, and the coefficient of expansion is

about half that of aluminum alone. Increasing the fiber percentage to 50-55%

increases the modulus to 25.5 Msi. Meanwhile density remains almost exactly the

same as that of the matrix metal. Thus, properties comparable to steel are possible

in a material with the weight of aluminum. Moreover, these properties can be tailor

made to fit a design. Instead of being tied to the normal thermal-expansion rate of a

metal, for example, the amount, shape, and size of reinforcement material may be

varied to control the rate. In some instances, the lowest expansion possible is

clearly ideal. But in others, the expansion rate might be matched to that of other

materials in the design. For example, if both aluminum-matrix composites and steel

are utilized in the same design, the ideal composite may be one that matches the

expansion rate of the steel. In this way, distortion, high stress, or loose joints,

which may result from different expansion rates, can be eliminated.

A great deal of effort has been devoted in the past few years to research and

development of metal matrix composites due to their superiority over conventional

and other composite materials in advanced engineering applications. A wide variety

of metallurgical processes including diffusion-bonding, plasma spray bonding,

electroforming, liquid metal infiltration, to mention just a few, have been used for



fabricationof fiber reinforcedmetalmatrix composites.A majorproblemwhich

arisesis the compatibility betweenthe fiber and the matrix which includesthe

relevant chemical reactionstaking place at the fiber-matrix interface during

manufacturing and in service conditions. Such reactions generally have a

detrimentaleffectontheloadtransfercapabilitybetweenthecompositeconstituents.

A numberof studieshaveappearedonmanufacturingandcharacterization

of the mechanical and physical behavior of a number of aluminum based

filamentarycompositeswith graphite,boron and silicon carbidecoatedboron

(borsic)fibers. Theuseof boron/aluminumcomposites,however,attemperatures

higherthan900° C (1652° F) is seriouslyquestionedasboronfibers reactrapidly

with moltenaluminumresultingin degradationof themechanicalpropertiesof the

composite.This hamperstheuseof boronfibersfor high-temperatureapplications

or for fabricationmethods,asfo example,low pressurehigh-temperaturepressing

thatmightbemoreeconomicallyfeasible.Suchdisacvantageshaveresultedin the

developmentof siliconcarbide(SIC)fibers.

Recently, much work hasbeendoneon the developmentof continuous

fiber, whisker and particulatereinforcedsilicon carbide/aluminummetalmatrix

composites.Siliconcarbide(SIC)fibershavesurfacesthat readilybondto various

aluminumalloysandresistdegradationathightemperatures.Suchcompositescan

thereforebeconsolidatedwith moreeconomicalprocessesusinghightemperatures

andlow pressures.

The characterizationof the mechanicalandphysical behaviorof SiC/A/

compositeshasnot receivedmuchattentionin the literature. Flom andArsenault

[1] performedan experimentalstudyof the plastic strainsand the plastic zone

developedin the aluminummatrix arounda shortSiCcylinder duringa thermal

cycledueto the different thermalexpansioncoefficientsof the two materials. A

theoreticalmodel wasalsodevelopedto explain the plastic deformationsin the
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matrix. The same authors [2] also determined the strength of the interfacial bond

between SiC and 6061 aluminum for particulate composites and found it to be at

least 1690 Mpa. McDanels [3] investigated the tensile stress-strain behavior of

SiC/A/ composites containing SiC whisker, nodule or particulate reinforcement.

He found that the elastic modulus of the composite is isotropic and depends only on

the volume ratio of the reinforcement, while the strength and ductility are mainly

influenced by the matrix alloy and temper condition. The mechanical properties of

the composites are better than those of the unreinforced metal. Results on the

mechanical behavior of discontinuous SiC/A/ composites have also been published

by Divecha et al. [4]. The effect of strengthening of 6061 aluminum alloy by SiC

short fibers and platelets was studied by Arsenault [5]. He found that the strength

of the fiber composite is greater than that of the platelet composite and that the

strengths of both composites are higher than those predicted by continuum

mechanics theories. This is attributed to the high dislocation density of the matrix

resulting from the difference between the thermal expansion coefficients of silicon

carbide and aluminum. Tsangarakis et al. [6] investigated the mechanical properties

of several particulate and continuous fiber silicon carbide/aluminum composites and

gave results for the tensile strength, fracture toughness and fatigue crack growth

rate.

In many metal matrix composites a high thermal expansion mismatch

between the matrix and the fiber exists resulting in high thermal stresses. High

residual thermal stresses are developed in the matrix during cooling from

consolidation temperatures which may result in premature yielding even before

application of external loading. The study of the thermal expansion beh_ivior and

the resulting thermal stresses is an important task in the characerization of the

composite.

A number of studies have been devoted to the problem of thermal expansion

4
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behavior of MMC's. Levin [7] derived the macroscopic coefficients of thermal

expansion (CTE's) of an elastic two-phase composite with perfectly bonded

isotropic phases from the thermoelastic constants of the phases and the macroscopic

elastic moduli of the composite. Bounds on the CTE's of fiber reinforced

composites were given using bounds for the macroscopic elastic moduli of the

composite. Expressions for CTE's of fiber reinforced composites with a doubly

periodic array of circular hollow or solid fibers were derived by Van Fo Fy [8,9]

who performed a thorough stress analysis. Schapery [10] calculated upper and

lower bounds of multiphase media by employing extremum principles of

thermoelasticity. Levin's results were extended to two-phase composites with

anisotropic constituents by Rosen and Hashin [11]. They also gave bounds for the

CTE's of anisotropic composites with any number of anisotropic phases. Dvorak

and Chen[ 12] presented exact expressions for the CTE's of a composite consisting

of three cylindrical perfectly bonded phases having transverse isotropy and arbitrary

transverse geometry.

The above works were concerned with the micromechanical prediction of

the linear thermal expansion behavior of composites. However, when the

composite is subjected to temperatures above a critical value, plastic stresses are

developed in the matrix and the strain versus temperature curve of the composite

becomes nonlinear. A relatively limited number of investigations has dealt with the

problem of nonlinear thermal expansion behavior of composites. Hoffman [13]

studied the elastic and elastoplastic stresses in tungsten fiber reinforced 80 Ni + 20

Cr matrix composites subjected to heating or cooling in the range of 27 to 1090 ° C

(80 to 2000 ° F). Dvorak et al. [14] determined the initial yield surfaces of

boron/aluminum composites for mechanical and thermal loading using a finite

element analysis of a regular hexagonal array model. They found that small

temperature changes in the range of 10 to 38 ° C (50 to 100 ° F) can introduce plastic
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strainsin compositeswith amatrix tensileyield stressof theorderof 10ksi. These

plastic strains were proportional to the yield stress. Flora and Arsenault [1]

determinedexperimentallythe plasticstrainsand the elastic-plasticboundaries

producedin thealuminummatrixaroundashortSiCcylinderduringathermalcycle

anddevelopeda theoreticalmodelfor thepredictionof theplasticzone. Kural and

Min [16] presentedan elastoplastictheoretical model for the study of plastic

deformationin thematrix materialof graphitefiber reinforcedMMC's causedby

thermalcyclic loadingandresidualthermalstresses.Experimentalresultsverified

the elastoplastic stressespredictedby the theory. In another paper Min and

Crossman [17] used the above theoretical model for the study of the

thermomechanical behavior of GffA/ composites.

In conclusion, there is an urgent need for adequate characterization of the

mechanical and physical behavior of continuous SiC/A l composites under a variety

of loading and environmental conditions. A revlew of the literature revealed that

relatively few experimental data on MMC's are available to compare the predictions

of the various analytical models with the actual response observed in the laboratory.

In particular, there appears to be an absence of systematic investigation of the

nonlinear response of unidirectional composites subjected to various loading and

environmental conditions. In addition, results from such characterization tests are

urgently needed as input into finite element structural analysis programs. More

specifically, data are needed for input into and verification of multifactor-dependent

nonlinear constitutive relationships developed at NASA-Lewis Research Center

[18].

The objective of the present work is to conduct a systematic experimental

study of the mechanical and thermal properties of SCS-2 continuous fiber

reinforced 6061 aluminum composite and its constituents at temperatures up to

399 ° C (750 ° F). Theoretical predictions are made by several elastoplastic
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micromechanicalmodelsbasedon a one-dimensional rule-of-mixtures model, an

axisymmetric composite cylinder model, a successive approximation scheme with

the Prandl-Reuss plastic flow model, and an average field theory. The experimental

results are used in conjunction with a least squares analysis to determine the

unknown exponents of multifactor-dependent nonlinear constitutive relationships

developed at NASA-Lewis Research Center [18] for the composite and its

constituents.



2. GENERAL BACKGROUND

2.1 Metal Matrix Composites

As with all composite materials, metal matrix composites have a continuous

matrix phase within which is embedded a second phase that can be particulates,

whiskers, chopped or discontinuous fibers, or continuous fibers. As the name

implies, metal matrix composites have this second phase embedded in a metallic

matrix. In many structural applications the fiber properties are the most important

and the matrix may be chosen based on cost and minimum weight. There are,

however, a significant number of applications in aircraft and spacecraft design

where the matrix must possess particular properties if the composite is to perform

as desired. In addition to the desired high stiffness to weight ratio, for space

structures applications, for example, it is often necessary to have dimensional

stability which requires a coefficient of thermal expansion approaching zero. In a

significant number of cases the material is subjected to high temperatures, where

epoxy composites are quite unusable, so that either metal or, in the extreme

temperatures, ceramic matrix composites must be considered.

There is a large variety of metals available for use as the matrix. The one

chosen depends on the particular application, the use temperature, the environment,

and more importantly, the interaction of the fiber and the matrix. Interaction refers

to the wetting of the fiber by the matrix and the potential for a detrimental reaction

between the fiber and the matrix [19]. The fiber and the matrix may react

chemically, especially at elevated temperatures, degrading the ability of the fiber to

performe its function. This may also result in reaction products that further degrade

the performance of the composite. Some of the most commonly used matrix

materials include nickel superalloys, titanium alloys, aluminum alloys, magnesium,

copper and steels. Fibers used are generally grouped into five classes: refractory

metal wires, oxides, boron, silicon carbide and carbon/graphite. Typically, fibers
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havehighmodulus,highstrengthandlow weight,sothatthestiffnessandstrength

of the compositearemainly due to the fiber. A more detailed discussionon

available matrices and fiber reinforcementscan be found in the literature

[19,20,21,22].

A numberof metallurgicalprocesseshavebeenusedfor thefabricationof

filament reinforcedmetalmatrix composites. The techniquesvary from those

employingconventionalpowdermetallurgyandslip castingmethodsto techniques

suchasdiffusionbondingandplasma-spraybonding. However,with themethod

usedgreatcaremustbeexercisedto:

1. Preservethefiber strengthduringall stagesof thefabricationprocess.

2. Minimizefiberbreakage.

3. Promotewettingandbondingbetweenthematrixandfiber.

Thechoiceof fabricationmethoduseddependsprimarily on themechanical

andchemicalpropertiesof thefiber andmatrix,thefiber lengthandsize,thefiber

packing,andthedesiredfiber configuration.Furthermore,it is necessaryto know

thethermodynamicsandkineticsof possiblefiber matrix reactions,aswell asthe

fabricationandservicetemperaturesto which thecompositesare subjected. A

detaileddescriptionof thevariousexisting fabricationmethodscanbe found in

references[19,20,21,22,23,24].

Comparedto metals,metalmatrix compositeshavethe potential of: (1)

Higherspecificmechanicalpropertieslike modulus/densityandstrength/density

ratios, (2) improvedfatigue life, and (3) higherusetemperaturebecauseof the

stablemetallicphase.Whencomparedto epoxymatrixcomposites,theyhavethe

followingpotentialbenefits:(1)Goodelectricalandthermalconductivity,(2)noout-

gassingin a vacuum,(3)metallicjoining conceptsmaybemoredirectlyusable,(4)

highertemperatureutilization,(5)no moistureabsorption,and(6) lessdegradation

of properties. In summary,it is clear that thereis a definite potential for metal

9
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matrix composites in the future. However, considerable work remains to be done

before widespread use of these materials becomes possible.

2.2 Basic Mechanics of Unidirectional Composite

The response of unidirectionally reinforced composites in various loading

environments is usually predicted by the rule of mixtures. It is the approach

generally employed to determine whether a metal matrix composite has interesting

properties initially, and as a measure of optimizing fabrication parameters or

bonding conditions [25]. By assuming an isostram criterion, i.e., both fiber and

matrix are strained equally and uniformly, the modulus, stiffness and Poisson's

ratio of the composite can be obtained. The major assumptions of this theory are:

(1) elastic (or plastic) isotropy, (2) the displacements are continuous across the

fiber/matrix interface (no interracial slip), (3) no chemical reaction between

constituents and (4) absence of residual stresses. Experimental data have shown

[25] that only the longitudinal modulus and major Poisson's ratio can be reliably

predicted by the rule of mixtures which takes the following form:

E1 = EfVf+Em(1-Vf) (2.1)

and

where

V12 "- Vf Vf-I- V m (1 - Vf) (2.2)

E 1 =

Ef =

Em=

V12 =

Longitudinal Young's modulus of composite (in the fiber direction)

Young's modulus of fiber

Young's modulus of matrix

Major Poisson's ratio of the composite

vf = Poisson's ratio of fiber

10



Vm = Poisson's ratio of matrix

Vf - Fiber volume ratio

Experimental data fit these approximations well, but Hill [26] showed,

theoretically, that these predictions were really the lower bounds of the moduli and

applicable when the Poisson's ratios of the constituents were equal. The modulus

prediction can be extended to the region where the matrix has yielded by

substituting d_m/d_m and v for Em and Vm in equations (2.1) and (2.2).

[d(Ym/(1 - Vf)
El = Ef Vf + _d--_m/

v12 = vfVf+v(1-Vf)

(2.3)

(2.4)

where (d_m/dem) is the slope of the matrix stress-strain curve at the equivalent

strain of the composite, and v is Poisson's ratio of the matrix at the same strain,

varying from the elastic value to 0.5 for an ideally plastic material.

For perfectly bonded fibers and for the case when the ultimate tensile strain

of the fiber is lower than that of the matrix, the longitudinal tensile strength of the

composite is approximated by the relation [27]:

Fit --- Fft Vf + (Ym Vm (2.5)

where

Fit = Longitudinal composite tensile strength

Fft = Longitudinal fiber tensile strength

13m = Average longitudinal matrix stress when the ultimate fiber strain is

reached

Although this simple strength prediction correlates well with experimental

data, Lynch [28] emphasizes that there is no reason to expect it to be highly

accurate. Fabrication problems would be expected to decrease composite strength.

11
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In thecaseof transversenormalloading,therearesosimplepredictionsfor

themodulusandstrengthof aunidirectionalcomposite.Themechanicsof materials

approachpredictsthefollowing transversemodulus:

where

E2 = E2fEm
Vf Em+ VmE2f

E2f= transversefibermodulus

Em= Em/(1-Vm2)

Vm= matrix Poisson'sratio

(2.6)

Em= matrixmodulus

The self-consistentfield modelandthevariationalboundingmethodyield

complexexpressionsfor transversemodulusin termsof otherproperties,suchas

bulk modulusandtransverseshearmodulus[29,30].

TheHalpin-Tsaisemi-empiricalrelationshipisapracticalone,oncetheright

choiceis madefor theparameter_ [31]:

1 + _1111 Vf
E2 = Em

1 - rll Vf (2.7)

where

111 - E2f- Em

E2f + _1 Em

and _l = reinforcing efficiency factor for transverse loading. The prediction above

tends to agree with experimental results for values of _1 between 1 and 2. If a

reliable experimental value of E2 is avail able for a composite, then the value of _1

can be obtained by using Eq. (2.7) and can then be used to predict E2 for a wide

range of fiber volume ratios of the same composite.

12



Prediction of transverse tensile strength, which is a matrix-dominated

property, is more difficult because this type of loading results in high stress and

strain concentrations in the matrix and interface/interphase. Reliable predictions are

based on elastoplastic finite element analysis and average field theory.

For in-plane shear loading the mechanics of materials approach uses a series

model under uniform stress and yields the following relation for the composite

shear modulus

1 _ Vf ._ Vm
G12 G12f Gm (2.8)

or

Gl2f Gm
G12 =

Vf Gm + Vm G12f (2.9)

where G 12f and Gm are the shear moduli of the fiber and matrix, respectively. As

in the case of transverse modulus, this approach tends to underestimate the in-plane

shear modulus.

where

The Halpin-Tsai semi-empirical relation in this case is

GI2 = Gm
1 -4- _2 112 Vf

1 - r12 Vf (2.10)

G12f- Gm
1"12 =

G12f + _2 Gm

and _2 = reinforcing efficiency factor for in-plane shear

Best agreement with experimental results has been found for _2 = 1. For

_2 =1, the relation (2.10) becomes

GI2 = Gm(G12f+Gm)+Vf(Gl2f-Gm)

(_12f + _m)- V--ff(-G_12f- Gm) (2.11)

This expression is identical to that derived by the self-consistent field model

13



andto thelowerboundof thevariationalapproach.

Predictionof in-plane shear strength, being a matrix dominated property,

would require elastoplastic analysis as in the case of transverse strength.

2.3 Thermal Properties

Many different analyses exist for predicting the coefficients of thermal

expansion (CTE) for unidirectional composites. A brief description of some of the

more widely used current analyses will be given here. The basic assumptions that

are common to all of the analyses to be presented are: (1) the fibers are circular in

cross-section and infinitely long, (2) the displacements are continuous across the

fiber/matrix interface, and (3) the temperature is uniform and the constituent

material properties do not vary with temperature.

Approximate micromechanical relations for the coefficients of thermal

expansion were given by Schapery for isotropic constituents [10]. The longitudinal

coefficient for a continuous fiber composite is given by the relation:

O_l = Ef _f Vf + E m _m Vm _ (E0_)I
Ef Vf + Em Vm E1 (2.12)

where

Ef, Em =

_f, _m =

Vf, Vm =

(E_)I =

fiber and matrix moduli, respectively

fiber and matrix coefficients of thermal expansion, respectively

fiber and matrix volume ratios, respectively

Ef _f Vf + E m _m Vm

This relation is similar to the role of mixtures for longitudinal modulus and

gives fairly accurate results. It is identical to that obtained by the self consistent

scheme.

The relation for the transverse coefficient of thermal expansion based on

energy principles is [ 10]:

14



where

_2 = _f Vf(1 + Vf)+ _m Vm (1 + Vm)- V12 0_1 (2.13)

Vf, Vm = Poisson's ratios of fiber and matrix, respectively

v12 - vf Vf + Vm Vm = major Poisson's ratio of composite lamina
as obtained by the role of mixtures

oq = longitudinal CTE of lamina as obtained by eq. (2.12)

In many cases, the fibers are orthotropic, i.e., they have different properties

in the axial and transverse directions. Properties for composites with orthotropic

constituents were obtained by Hashin [32]. The relation for the transverse CTE is

( _lf/+ _2m Vm ( 1 + V12m _lm/0_2 = _2f Wf 1 + v12 f _2f! O_2m!

-- (V12f Vf + v12 m Wm) !EE-_)I

where

(2.14)

_lf, _2f = axial and transverse CTE's of fiber, respectively

O_lm, _2m "" axial and trasnverse CTE's of matrix, respectively

v 12f, V I 2m = axial Poisson's ratios of fiber and matrix, respectively

(E_)I = Elf O_lf Vf + Elm O_lm Vm (2.15)

E1 = ElfVf+ElmVm (2.16)

In most cases the matrix can be considered isotropic and the orientation designation

of the matrix properties in eqs. (2.14) through (2.16) can be dropped.

Chamberlain used a plane stress thick walled cylinder solution to derive

expressions for o_1 and _2 for the case of transversely isotropic fibers in an

isotropic matrix. A discussion of this analysis and comparisons with experimental

data were given by Rogers [33]. The derived expression for oq is identical to

equation (2.12). The expression for _2 takes the form

15



2(ot2f- 0qn}Vf_2 = _m+

Vm(F- 1 + Vm) +(F + Vf)+ _ (1- Vl2f)(F - 1 + Vm)

(2.17)

where F is a packing factor which accounts for fiber packing geometry, and is equal

to 0.9069 and 0.7854 for hexagonal and square packing geometries, respectively.

Chamis [34] used a simple force-balance, or strength of materials approach

to derive expressions for the thermal properties of unidirectional composites with

transversely isotropic fibers. The derived expression for c_1 is again identical to

equation (2.12). The expression for _2 is

_2=_2fl/-_f+(1-f_f)(l+VfVmElf.)tXm E1 (2.18)

where El is the longitudinal elastic modulus of the composite and is given by the

simple rule-of-mixtures formula (2.1).

Several investigators [35-37] have used finite element analyses to study the

stress fields in unidirectional composites on a micromechanics level. A special

finite element code was developed by Bowels [38] to determine the thermal and

mechanical response of unidirectional composites.
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3. NONLINEAR CONSTITUTIVE EQUATIONS FOR
MODELING THE THERMOMECHANICAL BEHAVIOR OF
METAL MATRIX COMPOSITES

3.1 Introduction

A set of thermoviscoplastic nonlinear constitutive relationships (TVP-NCR)

have been developed by Chamis and Hopkins [17] mainly for application to high-

temperature metal matrix composites. These equations consist of products of terms

with unknown exponents determined from experimental data. Each term expresses

the dependence of mechanical and thermal properties of the constituent materials

and the composite itself on such quantities as, temperature, stress and time. A

micromechanical model for high temperature metal matrix composites has also been

developed by Hopkins and Chamis [39]. The model is based on a mechanics of

materials analysis of a single square array unit cell consisting of a single fiber,

surrounding interface and matrix. Based on the model, equations were extablished

to predict mechanical properties, thermal properties, and constituent microstresses

for the unidirectional fiber reinforced ply. The micromechanical equations were

combined with the TVP-NCR equation [17] to develop a computer program

(METCAN) for the analysis of fiber reinforced metal matrix composites. The

computational capability of the program is schematically shown in Fig. 3.1. The

program is integrated with finite element computer programs to determine the

response of complex high-tempera;ture metal matrix structural composites.

3.2 Equation Form and Features

The proposed [17] thermoviscoplastic nonlinear constituent relationships

(TVP-NCR) for the constituents as well as the composite itself, can be expressed in

a generic form applicable to all properties, mechanical and thermal. They relate the

dependence of material properties on such quantities as temperature, stress and

strain. These relationships are expressed in terms of dimensionless products as
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where

P = Property

T = Temperature

F = Strength Parameter

R = Reaction

N = Number of Cycles to Failure

n = Current Number of Cycles

t = Time

(3.1)
S

The subscripts signify the following:

u = Ultimate or Final Value

o = Reference State

M = Mechanical

T = Thermal

Symbols without subscripts "u" or "o" denote current values of the

variables. Letters with a dot above them designate differentiation with respect to

time. The exponents n, m, 1, k, p, q, r, s are empirical parameters which can be

determined from available experimental data.

Each term on the right hand side of the equation above describes a

monotonic functional variation of P/Po from some initial property value to a final or

ultimate state. For instance, the first term represents the temperature dependence,

where To could be room temperature, Tu the melting temperature of the matrix and

T the current temperature. In a similar fashion, the second term represents the

stress dependence and the third the stress rate dependence. Equation (3.1)

•i_ _
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describes the material behavior in the temperature-stress-stress rate-temperature rate-

reaction-mechanical and thermal fatigue-time space. The specific shape of the

dependence of P/Po on each term is dictated by the value of the exponent and the

reference and final values of the respective quantity in the term. It is seen that P=Po

when the variable on the right hand side of the above equation becomes equal to its

reference value. In addition, P=0 when the variable in the term becomes equal to its

final value. When the reference value of each variable is well defined and

corresponds to the conditions under which the value Po is measured, the only

condition that is known for the final value is that at that value the corresponding

quantity P becomes zero if the exponent is positive. On the other hand, P becomes

infinite when the exponent is negative.

The final value of the variable may or may not have a physical meaning,

depending on the property under consideration. If it does have a physical meaning,

then the final value is well known. Otherwise, the final value should be determined

from the available experimental data. For instance, let us consider the temperature

dependence of the mechanical properties of a metal alloy. It is known that the

mechanical properties of the alloy are zero at its melting temperature (Tm) and

therefore Tu=Tm in equation (3.1). Similarly, when the stress dependence of the

tangent modulus of the metal is considered, the quantity F in equation (3.1) can be

taken as the ultimate stress since at that point the tangent modulus becomes zero.

However, when the secant modulus is considered the ultimate stress cannot be used

for quantity F since at that stress the secant modulus does not become zero. In this

case F does not have a physical meaning and its value must be determined by fitting

euqation (3.1) to the experimental data.

As was mentioned before, the specific form of the function depends on the

exponent. By selecting various values of an exponent and by selecting the initial

and terminal values, a variety of functional dependencies can be simulated using

20

i:

• i /i i )iii(ii!ii!!i  ii i!i!ilii ill !71ii



-:: : : = ::: : ............:-_ __ _:: : ..... ::: _ _:_:::_:::__: : • __:_::• _::::_::::::_!__::_•i//::: ::::___ !::i:_::::ii:i:_i: 11:•i:%! ::•;i_!:i_ii:ii!:i:ii!_iiiiliili_iii!ii_i/iiiiiiii!iii!ili!iii!!!!iiii!ili!iii!iiiiiiiiiiiiiiiiiii:__:_:_̧_:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

,: (_i_

equation (3.1). In order to obtain the form of dependence of P/Po on the value of a

variable, for instance temperature (T), the variation of P/Po with T/Tu for To= 0 ° F

and various values of the exponent n is shown in Fig. 3.2. It is observed that for

positive values of n, P/Po varies between one and zero when T/Tu varies in the

interval (0,1). For n<l the curve is convex, while for n>l it is concave with

respect to the horizontal axis. For negative values of n, P/Po is always greater than

one and tends to infinity as T/Tu tends to one.

As was previously discussed the form of the TVP-NCR expressed by

equation (3.1) implies that the value of a quantity at the ultimate value of the

variable is equal to zero or infinity depending on whether the corresponding

exponent is positive or negative. While this condition applies to a number of

mechanical or thermal properties, there are others which do not become zero or

infinite at the ultimate value of the variable. Consider, for example, the variation of

Poisson's ratio of a metalic material with stress. Its value is constant up to the yield

stress of the material and it increases with stress up to the limiting value of 0.5 at

the ultimate stress. Similarly, the secant modulus of a material does not become

zero at the ultimate stress.

In order to use the TVP-NCR for material properties which do not satisfy

the end condition at the ultimate value of a variable, equation (3.1) should be

modified accordingly. The modified TVP-NCR which incorporates all material

properties can be put in the following form

Ap [ Wu-Tin[ Fu- _]m[l_u-(_olir J'u-t7 k

_Po= [Tu mTo ] LFu--_oJ [_J [_J

Ru----u-S-_oJ [_MM--nMoJ LN T - nToJttu-to]

(3.2)

where
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AP= P - Pu

APo = Po - Pu

The features of the TVP-NCR can be summarized into three groups: (1)

physical, (2) fundamental, and (3) computational, as follows [17]:

(1) Physical The constitutive relationships describe dependence on

temperature, time, stress, stress rate, and complete property degradation as

the ultimate value is approached.

(2) Fundamental - The constitutive relationships are:

• generic - they are applicable to all constituent material properties.

• evolutionary - they are easily extended to include additional dependence.

• isomorphic - they have the same form for all the properties.

• unified - they are fully coupled from the initial to the terminal material

state.

• universal - they are fully applicable to any three constituents (fiber,

matrix, interface).

• nondimensional - they are normalizable with respect to reference and

ultimate values.

(3) Computational - the constitutive relationships are:

• computationally efficient - they only require simple substitution and

exponentiation.

• easily integrated into nonlinear composite mechanical and structural

analysis codes.

3.3 METCAN - The Metal Matrix Composite Analyzer [18]

Predicting the mechanical and thermal behavior and the structural response

of components fabricated from MMC requires the use of a variety of mathematical
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models. An extensive research in computational mechanics methods for predicting

the nonlinear behavior of MMC's has been undertaken at NASA-Lewis Research

Center. This research has led to the development of the METCAN (Metal Matrix

Composite Analyzer) computer code.

The integrated approach implemented in the METCAN computer code is

illustrated in Fig. 3.1. The cyclic arrangement defines the computational effort for

each load increment. Material nonlinearity is treated at the constituent (fiber,

matrix, interface) level, where the current material model describes a

time-temperature-stress dependence of a constituent's mechanical and thermal

properties at any instant in its "material history space." Characteristic properties of

the composite, at the various levels of simulation, are approximated from the

instantaneous constituent properties by composite mechanics. These properties

then could be used, for example, to specify elemental properties for a subsequent

global structural analysis by finite element analysis. In the "decomposition"

process, global response variables are decomposed into localized response, again at

the various levels of simulation.

Some of the basic •features of METCAN with its flow chart shown in Fig.

3.3 are:

* Linear Analysis - Thermal/Mechanical Room/High Temperature Properties.

• Nonlinear Analysis - Thermal/Mechanical Monotonic Load Histories.

• Microstresses - Due to Thermal/Mechanical Loads.

• Ply Stress/Strain Influence Coefficients.

• Ply Thermo-Visco-Plastic Response.

• Stress/Strain Behavior Data for Uniaxial Loading.

• Residual Stresses Due to Processing/Curing Conditions.

• Stress Concentration Factors around a Circular Hole in an Infinite Plate.
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4. THERMOMECHANICAL CHARACTERIZATION OF
CONSTITUENT MATERIALS

4.1 Introduction

The behavior of the composite is intimately related to the properties of the

constituents, therefore, it is important to determine these properties under a variety

of loading and environmental conditions. Micromechanical analyses used for

prediction of composite properties rely on the properties of the constituents and

their interaction. In the present case it is desired to characterize as fully as possible

the stress-strain and thermal deformation behavi or of the silicon carbide fiber (SCS-

2) and the aluminum matrix at various temperatures.

4.2 Characterization of SiC Fiber

The silicon carbide fiber (SCS-2) studied is produced by chemical vapor

deposition (CVD) and is used as the reinforcement in metal matrix composites.

Specifically, these fibers are used in titanium and aluminum metal matrix

composites because of their high-modulus, high strength, thermal stability, and

compatibility with the matrix materials. These fibers have high strength and

modulus, but show some deterioration in tensile strength at temperatures above

800 ° C [40]. There are two commercial processes for making continuous silicon

carbide fibers: one is by vapor deposition over a tungsten or carbon core that

produces a large diameter fiber (100 - 150 _tm), and the other is by melting and

spinning an organic polymer containing silicon atoms as a precursor fiber followed

by heating at an elevated temperature that produces a smaller diameter fiber (10-30

I.tm).

The SiC fiber used in this study is a continuous filament produced by

Textron in a tubular glass by CVD as shown in Fig. 4.1. The process occurs in

two steps on a carbon monofilament substrate which is resistively heated. During

the first step, pyrolytic graphite (PG) approximately 1 ktm thick is deposited to

26
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smooththesubstrateandenhanceelectricalconductivity. In thesecondstep,the

PGcoatedsubstrateis exposedto form betasiliconcarbide(I]SiC) continuouslyon

the substrate. The resulting filament, like most high-strength high-modulus

reinforcements,is brittle andexhibits a distributionof strengths. The filament is

extremelysensitiveto surfacedefectsandabrasion.To overcomethisproblem,the

filament manufacturershavedevelopedaprotectivecarbonsilicon coatingcalled

SCS,which is alsoappliedby CVD. Thecoatingconsistsmostly of carbonandis

slightly enrichedin silicon at thesurface. Thepresenceof theSCSsurfacelayer

causesatwofold increasein filamentstrength,presumablyby reducingtheseverity

of stressconcentrationatthefilamentsurface.Thefibersproducedby CVD canbe

categorizedinto three typesdependingon thesurfacecomposition [41]. SCS-2

fiberhasa 1 lam(39 lain.)carbonrichcoating,which increasesin siliconcontentas

theoutersurfaceis approached.This fiberhasbeenusedextensivelyto reinforce

aluminum. SCS-6fiber hasa 3 lam(118 lain.)carbonrich coating in which the

siliconecontentexhibitsmaximaat theoutersurfaceandat 1.5I.tm(59 lain.) from

theoutersurface.TheSCS-6fiber is primarily usedto reinforceTitanium. SCS-8

fiber wasdevelopedto give bettermechanicalpropertiesthanSCS-2 in aluminum

composite transverse to the fiber direction. It consists of 6 lam (236 lain.) of very

fine grained SiC, a carbon rich region of about 0.5 _tm (20 _tin.), and a less carbon

rich region of 0.5 lam (20 lain.). Figure 4.2 is a photomicrograph and a schematic

representation of a fiber cross section showing the interior of the fiber and the

carbon monofilament substrate.

Several methods exist for measuring the elastic modulus of a fiber, three of

which are briefly reviewed here. They are the sonic modulus method, direct strain

measurement test, and the standard ASTM test [42].

The sonic test is based on measurement of the time it takes for a sonic pulse

to travel a given distance in the fiber. The modulus is given by
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where,

Ef = Pf c 2 (4.1)

Ef = modulus of fiber

pf = density of fiber

c = sonic velocity

In the direct strain measurement test, the fiber strain under loading is

measured directly with a noncontact extensometer, usually one based on a laser

system. The fiber modulus is then obtained directly as

Er = of (4.2)
Ef

where of and Ef are the stress and strain in the fiber, respectively.

The method used in this study was the standard ASTM method described in

ASTM specification D3379-75 [42,43]. Silicon carbide SCS-2 fibers were

obtained from the composite manufacturer, Textron Specialty Materials Inc. They

were tested in tension under constant strain rate to determine strength, elastic

modulus and failure strain. The method is limited to fibers with an elastic modulus

greater than 21 GPa (3 x 106 psi). The filament is centerline mounted on paper with

slotted tabs (Figure 4.3) and axial alignment is accomplished without damaging the

filament. After the specimen is mounted in the test machine the paper tab is cut to

allow for filament elongation. Originally, the specimens were tested in an Instron

servohydraulic machine using a 25 lb. load cell and specially made grips.

Subsequent tests were conducted on a small frame designed for low load testing.

The test system consists of a reaction frame, a 50 lb. load cell (Hottinger Baldwin

Measurements), LVDT (Trans-Tek, Inc.), grips and a pneumatic cylinder. The

specimen with the grips was mounted in this loading frame with one set of grips

connected to the moving piston of the pneumatic cylinder and the other set

connected to the other end of the reaction frame through the load cell.
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Twelve specimensof gagelengthsof I, 1.5, 1.75,2, and 2.25 in. were

tested. Theywere loadedto failure andload-displacementcurveswereobtained

andrecordeddigitally andstoredon thecomputer.Thecross-sectionalareaof the

fiber, A, was determined from measurements of a representative number of fiber

cross sections in highly magnified photomicrographs. The average cross sectional

area was determined as follows:

A- Zaf
NM 2 (4.3)

m

af =

N =

M=

average fiber cross sectional area

area of one fiber cross section in photomicrograph

number of fibers measured

photomicrograph magnification factor

The measurements showed that the SCS-2 fiber has a uniform diameter of 140 _tm

(0.0055 in.) with a carbon core diameter of 34 lam (0.00134 in.). The elastic

modulus of the filament cannot be determined from the slope alone of the load-

displacement curve since the system compliance must be taken into consideration.

The system compliance is the portion that indicates elongation contributed by the

loading train and the specimen gripping system. It must be determined

experimentally for a given combination of test machine conditions, grip system and

specimen mounting and subtracted from the indicated elongation to yield true

specimen elongation in the gage length. An apparent compliance, Ca, can be

determined fi'om the initial straight line portion of the load-displacement curve.

Ca = u (4.4)
P

where P and u are the load and cross-head displacement, respectively, associated

with the slope of the straight line portion of the load-displacement curve. The term

apparent compliance is used because cross-head travel, due to system compliance,
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is not a true measure of filament displacement. This difficulty is overcome by

assuming that the system compliance is constant. Thus

Ca = u = u_ + Cs = L + C_ (4.5)
P P AEf

where uf and Ef are the actual fiber displacement and modulus, respectively. By

determining values of Ca for different gage length specimens, the true value of Ef

can be determined from equation (4.5). In particular, Ef can be determined from the

slope of the best-fit straight line plot of measured values of Ca as a function of gage

length (Fig. 4.4). The intercept of this straight line with the compliance axis

represents the system compliance, Cs, from which Us is determined as

Us = CsP (4.6)

The elastic modulus of the filament is determined from eq. (4.5) as

L (4.7)
F-4 - A(Ca- Cs)

The fiber strain at failure, El, is simply

Ef = Umax - us (4.8)
L

and the tensile strength is

Fft = Pmax
A

(4.9)

From the load-deflection curves it is seen that the fiber behaves linearly up

to failure. The mean value of the modulus was found to be 400 GPa (58 Msi). The

tensile strength showed large scatter with a range of 3,460 - 5,310 MPa (502 - 770

ksi). A size effect trend is seen in Fig. 4.5 where the tensile strength appears to

decrease with increasing gage length. The mean value of the strengths measure was

4,000 MPa (580 ksi) with a variance of 15%. An approximate modulus was

calculated by using the rule of mixtures. The modulus of the carbon core and SiC

33



¢,0
.g,.

g_

<

0.0025

0.002

0.0015

0.001

0.0005 "

0

0

Apparent Compliance, C, in/ib
II

! ! !

Figure 4.4

! I ' ! ' ' I ' ' ! ' I ' ' ' ' I '

0.5 1 1.5 2

Gage Length, ill.

Apparent Compliance versus Gage Length for SCS-2 Fiber

i I I

2.5



g_

800

640

48O

320

160

0 I I I I

0

Figure 4.5

Ultimate Tensile Strength

0 0

0

0 o 0
0 0

0
0

0
0

0.5 1 1.5 2 2.5

Gage Length, in

Tensile Strength of SCS-2 Fiber as a Function of Gage Length



sheath in the fiber are 41.4 GPa (6 Msi) and 414 GPa (60 Msi), respectively. The

volume fraction represented by the carbon core is 5.9%. The calculated modulus of

SCS-2 fiber was obtained as

Vc Ec + Vs Es (4.10)Ef =

where

Vc=

V s =

Ec =

Es =

volume fi'action of carbon core

volume fraction of SiC sheath

elastic modulus of carbon core

elastic modulus of SiC sheath

The modulus obtained from the above equation is 392 GPa (57 Msi).

The manufacturer's values for the elastic modulus and fracture strength of

the fiber are given as 4,000 MPa (580 ksi) and 407 GPa (60 Msi), respectively.

Similar results are found in the literature. Nunes [44] in his study of the tensile

properties of several spools of silicon carbide filaments (SCS-2) gives an

experimentally measured modulus of 386.2 _+ 9.66 GPa (56.0 _+ 1.4 Msi) for each

of the spools tested and a failure stress range of 2,993 MPa (434 ksi) to 3,290 MPa

(477 ksi). He also found that examination of the broken filaments from each of the

spools tested revealed a normal tensile failure that originated at the relatively weak

interface of the carbon monofilament substrate. Similar values for ultimate tensile

strength and tensile modulus are given by Skinner et al. [45]. The reported values

for the elastic modulus and strength of SCS-6 fiber of 4,000 GPa (58 Msi) and

3,350 MPa (485 ksi), respectively. They also found that the tensile strength

exhibits a strong size effect. The fracture appears to be flaw density limited, since

increasing the gage length increases the statistical probability of a surface flaw in the

gage length. According to Skinner et al. fracture in SiC fibers can be initiated at

surface flaws, inclusions and defects in the core-sheath interface and occasionally in

the core. In addition, he noticed that the overall failure trend of the SiC fiber
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indicates insensitivity to thermal exposure. This is substantiated by Crane and

Krukonis [46], who have shown that SiC fiber strength remains fairly uniform

below 600 ° C (10112 ° F), above which rapid strength degradation occurred, and by

Nutt and Wawner [40] who showed that the SiC fiber strength remains fairly

uniform below 800 ° C.

Thermal expansion properties for SiC fibers are scarce in the literature.

Hillmer showed that thermal expansion of SCS fibers is controlled by the SiC

sheath and does not depend on the fiber coating or the carbon core [47]. He also

found that after a relatvely small initial expansion from room temperature to 450 ° C

(842 ° F), the expansion of tile fiber increases linearly with temperature from 450 ° C

(842 ° F) to 1500 ° C (2732 ° F). Above 1300 ° C (2372 ° F) a hysteresis effect was

observed involving a temporary 50% reduction in expansion. No results were

obtained over the low range between room temperature and 450 ° C because of

inadequate resolution.

A new method was developed for measuring longitudinal thermal expansion

in the fiber [48]. A fiber specimen of length I is fi'eely supported at the ends on V-

grooves in a titanium silicate support plate as shown in Fig. 4.6. The fiber is

straight at room temperature, To. When the temperature increases to Ti the fiber

bends because its coefficient of thermal expansion is higher than that of the support

plate. Assuming a parabolic shape for the deformed fiber we obtain the deflection

curve, then we calculate the total length of the fiver at temperature Ti, and finally we

calculate the thermal strain as follows:

Et = (Xr AT +
8 _i 2

3/2{1 + _r AT) (4.11)

where

o_r "- coefficient of thermal expansion of support (reference) titanium

silicate material
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AT =

_i =

Ti - To = temperature change

central deflection of fiber

If a sine function is assumed for the deformed shape of the fiber

I1 (1 +_rAT (4.12)

the thermal strain is calculated as

_/ (/l;_il( n_Ill ,_ n! ] 2n-l]/
1)!!2 k2_n -1e:t= (1 + Otr AT)2 + 1 + (2n n

(4.13)=|

The difference between the strains given by eqs. (4.11) and (4.13) is less than 4%.

The coefficient of thermal expansion is obtained by plotting the thermal

strain versus temperature as shown in Fig. 4.7, and taking the slope of this curve.

The coefficient of thermal expansion of the SCS-2 fiber varies with temperature,

starting with a value of 0.9 x 10-6/°C (0.5 x 10-6/°F) at 24 ° C (75 ° F) and increasing

nonlinearly to 2.6 x 10-6/°C (1.4 x 10-6/°F) at temperatures between 120 ° C (250 ° F)

and 200 ° C (400 ° F).

The transverse mechanical and thermal properties of the SCS-2 fiber are not

known and cannot be measured easily, but it is assumed that they are close to the

longitudinal properties despite the presence of the carbon core. More exact values

of transverse properties can be obtained indirectly from transverse properties of the

composite.

Properties of the SCS-2 fiber measured in this program or obtained from the

literature are summarized in Table 4.1
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Table 4.1 Properties of Silicon Carbide SCS-2 Fiber

Young's Modulus, E

Poisson's Ratio, v

U

Ultimate Tensile Strain, £ft

Tensile Strength, Fft

Coefficient of Thermal Expansion, ctf

At 24°C (75 ° F)

120 - 200 ° C (250 - 400 ° F)

450 - 1500 ° C (842 - 2,732 ° F)

Density, p

400 GPa (58 Msi)

0.22

0.010

4,000 MPa (580 ksi)

0.9 x 10-6/°C

2.6 x 10-6/°C

4.9 x 10-6/°C

(0.5 x 10-6/° F)

(1.4 x 10-6/° F)

(2.7 x 10-6/° F)

2.72g/cm3 (0.0981 lb/in3)

4.3 Characterization of 6061-T4 Aluminum

The aluminum alloy used in manufacturing the composite studied is 6061

with T6 temper. This aluminum alloy contains silicon and magnesium in

approximately equal proportions to form magnesium silicide, thus, making it

capable of heat treatment. Although this alloy is not stronger than other aluminum

alloys, it possesses good formability and corrosion resistance with intermediate

strength. During consolidation of the composite the aluminum experiences a heat

treatment process which changes its temper. It was suggested by the manufacturer

(Textron) that the aluminum matrix in the composite system has properties close to

those of 6061 with T4 temper. Aluminum of 6061-T4 type was obtained in plate

form for thermomechanical characterization. Later on, it was found that, following

the composite specimen preparation process, the matrix experiences a further heat
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treatmentsothat its effective in situ propertiesbecomecloser to thoseof fully

annealed6061Aluminum.

Rectangularspecimensof dimensions20.32x 1.27x 0.16cm. (8.0x 0.5x

0.062in.) were prepared. For testing at elevatedtemperaturessteel tabswere

bondedontothespecimenendswith a highsu'ength-hightemperatureadhesive(FM-

36). The aluminum specimenswere loaded in tension in an Instron testing

machine. The specimenswere loadedat a crossheadrate of 0.06 in./min up to

failure. Particularcarewas takenin aligning the couponsin the grips. Special

gripscapableof withstandingtemperaturesup to 540° C (1000° F) wereused.The

specimensweretestedinside•a thermalchambersetto the desiredtemperature.A

water-coolingsystemwas usedto protect the loadcell from the extensiveheat

generatedatelevatedtemperatures.Theexperimentalsetupfor this testingis shown

schematicallyin Fig. 4.8. Axial strainsweremonitoredwith straingagesanda

specialhigh temperatureextensometer(Model 632.11B-45,MTS Corp.). WK

gages(Micro MeasurementsGroup) madeof karmaalloy and encapsulatedin

phenolic resin were used at temperaturesup to 550° F. RKO gages(J. P.

Technology)madeof karmaalloy andencapsulatedin polyimide resinwereusedat

750° F. In somecasesaxialstrainswerealsodouble-checkedwith anotherwater-

cooledhigh temperatureextensometer(2630 series,Instron) with a 1 in. gage

lengthandcapableof operatingin thetemperaturerangeof 15- 500° C (59-930° F).

A dataacquisitionsystem(MetrabyteCorp.)wasusedto acquire,processandplot

thedata.

Stress-straincurvesfor 6061-T4aluminumat varioustemperaturesandata

strain rateof 0.02% per secondare shownin Fig. 4.9. Figure 4.10 showsthe

samestress-straincurveszoomedto the 1%strain range. At this relatively low

strain rate it takesseveralminutes to fail the specimen. It is seenthat as the

temperatureincreasestheyieldstressor theproportionallimit, CYmy, decreases. The
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tensile strength also decreases with increasing temperature. The ultimate strain does

not follow a consistent trend with temperature, but in general it decreases with

increasing temperature due to the reduced degree of work hardening.

Figures 4.1 land 4.12 show stress-strain curves for 6061-T4 aluminum at

various temperatures obtained at a strain rate of 115% per second. The yield stress

and strength are higher at this higher strain rate. However, no conslstent trend in

ultimate strain is observed with increasing strain rate.

Figures 4.13 and 4.14 show the decrease in ultimate strength and yield

stress with temperatuere for both strain rates used. The relative increase in tensile

strength at the higher strain rate is plotted versus temperature in Fig. 4.15. It is

seen that the effect of strain is small at room temperature but increases rapidly at

higher temperatures. This increase begins rather abruptly at a specific temperature

which corresponds roughly to the recrystallization temperature. In addition to

increased strain rate sensitivity, high temperature behavior above the

recrystallization point is characterized by a breakdown of low temperature

strengthening mechanisms as a result of a higher rate of self diffusion. Poor

resistance to creep and an inability of the metal to workharden are invariably

associated with high temperature behavior. Tensile properties at low strain rate

deteriorate considerably because of the transition to high temperature behavior. At

high rates of strain, under high temperature conditions, higher strength properties

are maintained, probably because plastic flow occurs more rapidly than diffusion.

Therefore, structural metals can be used safely at high temperatures under

conditions of rapid loading. The initial tengential modulus remains constant but the

secant modulus decreases at low rates and high temperatures. This decrease is due

to a small amount of plastic deformation and creep that occur during the initial phase

of the tensile test as the specimen is loaded slowly through the elastic region. This

plastic deformation decreases the slope of the stress-strain curve causing a decrease
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in modulus. Since creep is time dependent, the modulus determined at a high strain

rate is representative of true elasticity. In the case of low temperature behavior,

modul us values are unaffected because creep is negligible.

At 750 ° F, both at low and high strain rates, super plastic elongation is

observed. The superplasticity of aluminum 6061 is triggered at a certain strain rate

and temperature. Superplastic behavior occurs above these threshold levels. The

superplastic elongation is believed to result from grain boundary sliding. The strain

of superplastic elongation is reported to be several hundred percent.

In addition to mechanical properties, physical properties such as density and

coefficient of thermal expansion were measured. The density of the matrix

material, measured by the method described in ASTM D792-66 specification, was

2.72 g/cm3 (0.0981 lb/in.3).

The coefficient of thermal expansion, am, was obtained by measuring

thermal strain as a function of temperature. Aluminum specimens were

instrumented with EA-00 or WK-00 gages for thermal cycling up to 340 ° F or

500 ° F, respectively. At least three thermocouples per specimen were used to

monitor the temperature. Strain gages have been shown to be a practical and

adequate means of measuring thermal strain [49, 50]. However, they must be

properly compensated for the purely thermal output. One method of temperature

compensation employs an identical gage bonded to a reference material of known

thermal expansion exposed to the same temperature as the test specimen.

The true thermal strain in the material is given by

Ete = Eac - Ear + Err (4.14)

where

_tc =

Eac =

Etr =

true thermal strain in test specimen

apparent strain in test specimen

AT = true thermal strain in reference specimen
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ear = apparent strain in reference specimen.

Reference materials used are usually ceramics of low and stable coefficient of

thermal expansion. In this case titanium silicate, having a coefficient of thermal

expansion of _r = 0.03 X 10-6/° C, was used. The thermal strain is plotted versus

temperature and is shown in Figure 4.16. The thermal expansion coefficient _m is

obtained from the slope of the thermal strain versus temperature curve. The thermal

deformation of 6061-T4 aluminum was also determined by using a 10 mm (0.39

in.) long and 3 mm (0.12 in.) diameter cylindrical specimen with a dilatometer.

The thermal strain curve up to 482 ° C (900 ° F) is shown in Figure 4.17. The

thermal strain curves of aluminum are linear up to 120 ° C (250 ° F). Above this

temperature the strain-temperature curves become nonlinear and the coefficient of

thermal expansion increases.

Thermomechanical properties of both SCS-2 fiber and 6061-T4 aluminum

are summarized in Table 4.2.

4.4 Creep Properties of 6061-T4 Aluminum

Creep behavior is a very important characteristic of high temperature

composites. The important issue in creep behavior of composites is the

determination of the mechanism by which the creep behavior is introduced by the

creeping matrix and the less creeping fibers. The general definition of creep is time

dependent strain caused by a constant applied load at constant temperature. Usually

creep is undesirable and a limiting factor in the life of parts such as blades on the

spinning rotors of turbine engines. Creep can occur at any temperature, but the

behavior can be different for different temperature ranges. There is low temperature

creep behavior and high temperature creep behavior. The boundary between these

temperature ranges depends on the homologous temperature of the material. For

our matrix material the homologous temperature is approximately 188 ° C (370 ° F).
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Table 4.2. Properties of Constituent Materials

Property SCS-2 24 ° C

Fiber (75 ° F)
121 ° C

(250 ° F)

6061-T4 Aluminum

177 ° C 288 ° C

(350 ° F) (550 ° F)
399 ° C

(750°F)

Density, p, g/cm3 (lb/in.3)

Coefficient of Therm al Expansion,

or, 10-6/°C (10-6/°F)

3.05 (0.110) 2.72 (0.098) 2.72 (0.098) 2.72 (0.098) 2.72 (0.098) 2.72 (0.098)

23.2 (12.9) 23.4 (13.0) 24.3 (13.5) 25.4 (14.1) 28.8 (16.0)

a,, Young's Modulus, E,

GPa (Msi) 400 (58)
69 (10) 69 (10) 69 (10) 69 (10) 69 (10)

Poisson's Ratio, v 0.22 0.33 0.33 0.33 0.33 0.33

Yield Stress, _y, MPa (ksi)

Tensile Strength, Ft, MPa (ksi) 4000 (580)

148 (21.5) 137 (19.8) 117 (17.0) 53 (7.7) 14.5 (2.1)

278 (40.3) 244 (35.4) 216 (31.3) 167 (24.2) 42 (6.1)

Ultimate Tensile Strain, El, % 1.0
25 - 20 - 20 5 - 8 > 20



Creepis notonly affectedby temperaturebutalsoby stresslevel. Onceloaded,the

materialinitially deformsataveryrapidrate. If theappliedloadis sufficientlyhigh

an initial plasticdeformationalsooccurs,but significantdeformationceasesafter

the initial applicationof theloadandanincreasein loadis neededtocausefurther

deformation.Forlow temperatures,this typeof behaviorcancontinueindefinitely.

At high temperatures,theregionof constantlydecreasingstrain rate leadsto the

condition wheretherateof deformationbecomesindependentof timeandstrain.

Whenthisoccurs,creepis in its secondstage.This steadystatecreepratedepends

significantly onstressandtemperatureandis usedfrequentlyto characterizethe

creepresistanceof the material. Although considerabledeformationcanoccur

underthesesteady-stateconditions,eventuallythestrainratebeginsto accelerate

with time. Creepbehaviorcanbesimply explainedby theBailey-Orowanmodel.

It views creepas a result of competitionbetweenrecoveryand work-hardening

processes. After the load is applied, fast deformation begins, but it is not

maintainedasthematerialworkhardensandbecomesincreasinglymoreresistantto

further deformation. At low temperaturesrecoverycannotoccurwhich leadsto

steadystatein which the recoveryandhardeningprocessesbalanceoneanother.

As thetemperatureincreases,recoverybecomeseasierto activateandovercomes

hardening.Thus,thetransitionfrom primary to secondarycreepgenerallyoccurs

at lower strainsasthetemperatureincreases.The third stageof creepcannotbe

rationalizedin termsof the Bailey-Orowanmodel. Instead,tertiarycreepis the

result of microstructuralinstabilities. For instance,defectsin themicrostructure,

suchascavities,grainboundaryseparationandcracksdevelop. This resultsin a

local decreasein crosssectionalareathatcorrespondsto aslightly higherstressin

theregion.

Aluminum specimensweresubjectedto constantloadin theInstronservo-

hydraulicmachineoperatingin theloadcontrolmode. Bothhightemperaturestrain

57



gagesandahigh temperatureextensometerwereusedto monitor thetime-varying

strain. Creep tests were conducted inside the thermal chamber at three

temperatures,177° C (350° F), 288° C (550° F) and399° C (750° F). Figure4.18

showscreepcurvesfor 6061-T4aluminumfor anappliedstressequal to 85%of

the yield stresscorrespondingto the test temperature. At 177° C (350° F) the

materialexhibitsthetypicallow temperaturecreepbehavior.At 288° C (550° F) all

threestagesof creepareshown. At 399 ° C (750 ° F) high creep deformation is

observed with a very short second stage. From these creep curves it is apparent

that creep deformation increases sharply at higher temperatures for the same

effective load in relation to the corresponding yield stress. Figure 4.19 and 4.20

show creep rate and creep compliance curves obtained from the creep curves of Fig.

4.18.

4.5 Characterization of 6061-0 Aluminum

Although according to the manufacturer the in-situ properties of the

aluminum matrix are close to those of 6061 aluminum with T4 temper, it was

subsequently realized that all micromechanical predictions of composite properties

were in better agreement with experimental results when based on matrix properties

of fully annealed aluminum. Furthermore, during specimen preparation the curing

process for bonding the tabs to the specimen exposes the specimen to a temperature

history similar to that of the annealing process of aluminum. Other investigators,

such as Pindera and Lin [51] also assumed that the in-situ properties of the m atrix

are reasonably close to those of the fully annealed state. For the reasons above, an

additional test program was conducted to characterize the 6061 aluminum in the

annealed state.

Stress-strain curves for 6061-0 aluminum at various temperatures are shown

in Fig. 4.21. Thermal strains were also measured as in the case of 6061-T4

58



@,

8

7

6

" 5

Q_

t_.

3
t..

2

0

I

/

] 750 *F, 1.78 Ksi

/

/

/

/

/

/
/

/

/

I

J

/

0

/
/

/
/

f
/

/

550 °F, 6.77 Ksi

J

I I 1 I

100 200 300 400

Time, t, rain

350 OF, 15.25 Ksi

500

Fig. 4.18 Creep Curves of Aluminum 6061-T4 at Three Different Temperatures

-i

_i _ _,

59



i ¸ _,_,

+

!:( ,,(:i _

,i

200

/

/

/
50 _

/
/

/

750 °F, 1.78 Ksi

!
550 °F, 6.77 K.si

/
• J J

0

0 100 200 300 400 500

Time, t, rain

Fig. 4.19 Creep Rate Curves of Aluminum 606 l-T4 at Three Different Temperatures

6O



_9

1,0 L 000 L

!S')I g'C_I "l 0 09_

!_A LL'9 'do O_g /

¢

ulm '0)_o!
OOL

i l |,lJ i , ,

f
/

/

/

!

/

/

I

._ 81.'i '..-h,o;L I

I
I

';)m!1
OL L

f

, , I ...... ! _._L

I.'0

0

OL _
CD

("1
0

m
m.

0_"

m,,

og

i :ii!!_'"



'l!

¢/]

¢D
t_

150

120

9O

6O

3O

0

0

24 oC

121 oC

177 °C

288 °C

399 °C

1 2 3 4 5

Strain, a, (%)

Fig. 4.21 Stress-strain Curves of 6061-0 Aluminum at Various Temperatures

62



discussedbefore and plottedversustemperaturein Fig. 4.22. Propertiesof the

annealedaluminumaresummarizedin Table4.3. Theyield stressandthetensile

strengthof the materialat roomtemperatureare55.2MPa(8 ksi) and 124.1MPa

(18ksi), respectively.

Table 4.3 Properties of 6061-0 Aluminum

Temperature

24 ° C (75 ° F)

121 ° C (250 ° F)

177 ° C (350 ° F)

288 ° C (550 ° F)

399 ° C (750 ° F)

Elastic Limit
Stress

(_y, MPa (ksi)

Coefficient of

Thermal Expansion, o_
10-6/° C (10-6/° F)

41.4 (6.0)

39.3 (5.7)

37.4 (5.4)

33.1 (4.8)

15.9 (2.3)

23.4 (13.0)

23.6 (13.1)

23.9 (13.3)

24.8 (13.5)
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5. THERMOMECHANICAL CHARACTERIZATION OF SILICON
CARBIDE/ALUMINUM COMPOSITE

5.1 Specimen Geometry and Preparation

The material was obtained in the form of unidirectionally reinforced eight-

ply 30.5 x 30.5 cm (12 x 12 in.) SCS-2/6061 Al plates. These plates were

produced by using the diffusion bonding consolidation technique. Rectangular

specimens 15.24 cm ( 6 in.) long, 1.27 cm (0.5 in.) wide and 1.42 mm (0.056 in.)

thick were cut from these plates with a water-cooled thin diamond saw. The

specimen design is shown in Fig. 5.1. Longitudinal specimens were cut with the

long dimension parallel to the fibers and transverse specimens were cut

perpendicular to the fiber orientation. The test coupons were lightly sanded with

silicon carbide 340 grit sand paper and then tabbed along two opposite sides with

2.54 x 1.27 x 0.122 cm (1 x 0.5 x 0.048 in.) strips of steel. The steel tabs were

bonded onto the specimen grip sections using a high strength-high temperature

adhesive (FM-36, American Cyanamid Co.). The function of the tabs is to provide

a cushion between the rough grip surface and the specimen surface to prevent any

damage to the specimen material. The tab length was long enough to provide a

shear area large enough to transfer the load to the specimen.

The specimens were instrumented with WK gages (Micro Measurements

Group) for temperatures up to 288 ° C (550 ° F) and RKO gages (J. P. Technology)

for testing at 399 ° C (750 ° F). In addition to the strain gages, high temperature

extensometers (Instron and MTS) were used.

5.2 Physical Characterization

The density of the material was determined by the immersion method

described in ASTM specification D792-66. It was found to be 2.86 g/cm3 (0.1033

lb/in3).
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The fiber volume ratio was determined by analyzing photomicrographs of

transverse sections of the composite (Fig. 5.2). It was determined by two

methods. In the first method the total area of fiber cross sections was measured and

divided by the total area of the region covered. In the second method a number of

lines are randomly drawn on the photomicrograph. The fiber volume ratio, Vf, is

determined as the ratio of the cumulative length of the fiber intersections along the

lines to the total length of the lines drawn. The result obtained by these two

methods is

Vf = 0.44

A unidirectional specimen of the composite was subjected to thermal loading

in order to determine the thermal expansion coefficients along the longitudinal (_l)

and transverse (_2) directions. Unidirectional 8-ply specimens of dimensions 15.2

x 12.7 cm (6.0 x 0.5 in.) were instrumented with EA-00 and WK-00 type gages

(Micromeasurements Group) for temperature cycling up to 177 ° C (350 ° F) and

288 ° C (550 ° F), respectively (Fig. 5.2). Three thermocouples per specimen were

used to measure temperature. A programmable press (MTP-14, Tetrahedron) was

used to control the temperature increments. The specimens were thermally cycled

between room temperature and 177 ° C (350 ° F) or 288 ° C (550 ° F), for the two

types of gages. Longitudinal and transverse strains and temperature readings were

recorded at 14 ° C (25 ° F) intervals using a BC-8SSG strain gage bridge conditioner

(KAYE Instruments) and a data logger. Strains were recorded only when all three

thermocouples on the same specimen exhibited the same temperature reading. The

true thermal strains were obtained by subtracting the pure thermal output by means

of the reference specimen method described before [49,50]. The true longitudinal

and transverse strains were then plotted versus temperature and are shown in

Figures 5.3 and 5.4. The thermal expansion coefficients c_1 and a_2 were obtained

from the slopes of the corresponding thermal strain versus temperature curves.
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In a second type of experiment, longitudinal and transverse thermal strains

were obtained for temperatures up to 482 ° C (900 ° F) using a dilatometer. Special

cylindrical specimens 10 mm (0.39 in.) long and 3 mm (0.12 in.) in diameter were

used. For this purpose three layers of composite plate were first glued together to

produce sufficient thickness for preparation of the cylindrical specimens. The

longitudinal and transverse thermal strain curves are shown in Fig. 5.5. The results

of the two types of experiments are in agreement over the common temperature

range.

From Fig. 5.3 it is observed that the longitudinal thermal strain varies

nonlinearly with temperature, with a decreasing rate as the temperature increases.

This corresponds to a gradually decreasing longitudinal coefficient of thermal

expansion with increasing temperature. This behavior is attributed to yielding of

the aluminum matrix with decreasing amount of strain hardening. The transverse

thermal strain displays the opposite behavior increasing at a faster rate as the

temperature increases. This corresponds to a gradually increasing transverse

coefficient of thermal expansion with increasing temperature.

For both longitudinal and transverse thermal strains a "hysteresis loop" is

observed when the specimen is thermally unloaded down to room temperature. The

hysteresis loop is more pronounced for the longitudinal thermal strain. This

behavior may be explained, qualitatvely, by the following series of events. During

the initial heat up from room temperature both fiber and matrix expand linearly. At

higher temperatures the matrix yields under compression, the expansion becomes

strongly influenced by the fiber, and the composite coefficient of thermal expansion

decreases. The matrix continues to yield up to the maximum temperature of the

cycle. On cool down from the maximum temperature the fiber and the matrix are

unloaded linearly elastically until the matrix yields under tension. As the matrix

yields the expansion is primarily influenced again by the fiber response. On the
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other hand, the transverse thermal expansion is mainly controlled by the matrix

behavior, resulting in a smaller hysteresis loop. The reduced hysteresis in the

transverse direction is due to the fact that it is influenced by the product of

Poisson's ratio and the change in longitudinal coefficient of thermal expansion.

Furthermore, it was found that when the same cycle of thermal loading and

unloading was repeated several times the same loop was reproduced.

5.3 Mechanical Characterization

Standard characterization tests were conducted on the unidirectional lamina

to determine the following properties at various temperatures:

• Longitudinal Modulus, E1

• Transverse Modulus, E2

• Major Poisson's Ratio, v12

• Minor Poisson's Ratio, v21

• Longitudinal Tensile Strength, F_t

• Ultimate Longitudinal Tensile Strain, eu_t

• Transverse Tensile Strength, F2t

• Ultimate Transverse Tensile Strain, eu2t

The minor Poisson's Ratio can be determined by

= V12V21
t:l

(5.1)

A high temperature testing facility was used for thermomechanical

characterization of the SiC/A/ metal matrix composite. The testing facility consists

of an Instron 1331 Servo-hydraulic Testing System with a 22,480 lb tension

compression load cell, Instron 8500 Controller, a 20 gpm capacity hydraulic pump

and an ATS (Applied Test Systems, Model 3620) split box type oven with a view-

port and temperature range of-155 to 425 ° C (-250 ° to 800 ° F) controlled by ATS

series 2010 controller.
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A standard test procedure, which includes specimen preparation, testing,

and data reduction was followed for each test to promote reproducibility. Particular

care was taken in aligning the upper and lower grips. The alignment was checked

by loading an aluminum specimen in the elastic region. The specimen was

equipped with single strain gages. The alignment was considered acceptable when

the values of the three strains were within 2.5% of the average strain.

ATS high temperature grips were used with water cooled rods (Series 4043,

ATS) which were mounted on the load cell through a double knife- edge alignment

coupling (Series 4021, ATS). The double knife - edge alignment coupling was

implemented in the assembly to minimize specimen bending moment caused by

misalignment due to eccentric pull rods. The water cooled rod was installed to

protect the load cell from heat conduction directly from the grips. In addition, the

load cell was covered with insulating material and shielded with an insulating

square plate wrapped with aluminum foil to cut down heat convection and radiation

from the oven. Two large fans were also installed on top of the oven to blow away

the heat and cool the loadcell. Figure 4.8 shows a schematic diagram of the

elevated temperature tensile test system.

The strain gage output is conditioned through a Wheastone bridge

conditioner (BC-8SG, KAYE Instruments Inc.) amplified and then recorded by a

data acquisition system (Metrabyte Corp.). Axial strains are also double checked

by a water cooled high temperature extensometer (2630 Series, Instron) with a 1 in.

gage length and operating temperature range of 15 ° C to 500 ° C (59 ° F to 930 ° F).

The acquired data were transferred to a microcomputer and stored on a floppy disk.

For the high temperature tests, temperature induced effects were nulled out by

adjusting the output of the bridge conditioner or putting a dummy gage on an

identical but unloaded reference specimen placed inside the environmental chamber

and subtracting the temperature effect by connecting the dummy gage to an adjacent
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arm of the Wheastone bridge. In the case of the extensometer, the thermal effect

was nulled out by balancing the 8500 Controller (Instron) strain output at the test

temperature. When the specimen was heated to the test temperature, it was loaded

to failure and outputs were recorded by the data acquisition system as the net

induced mechanical strain. The temperature of the specimen was sensed by a K-

5

• i •

type thermocouple (Chromel - Alumel) attached to the specimen surface with high

temperature ceramic adhesive or Kapton tape. The cement and Kapton tape provide

some shielding of the thermocouple from the heat. All specimens were held at the

test temperature for 15 minutes to assure a uniform temperature throughout the

specimen then pulled at the desired rate. The tensile tests were carried out in the

Instron at a constant stroke rate of 0.06 in./min up to specimen failure.

Experiments were carried out at room temperature, 288 ° C (550 ° F) and 399 ° C

(750 ° F). The high temperature tests were conducted in the ATS oven which was

controlled to within 0.6 ° C (1 ° F).

The testing procedure was as follows:

1. Measure the width and thickness of the flat specimen at several points and

,

average them.

Place the specimen in the grips of the testing machine and carefully align

specimen and grips using spacers.

3. For elastic modulus determinations attach the extensometer or strain gage

leads to the strain recording equipment. Make a preliminary check of

settings and adjust the amplification scale.

4. Check the control settings and cross head speed on the Instron 8500

Controller panel.

5. Heat the oven to the desired temperature and keep that temperature stable for

uniformity.
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6. Start applying load and continue up to specimen failure and record the load

and strain.

Typical stress-strain curves for the unidirectional reinforced composite

tested parallel (0 °) and perpendicular 90 °) to the direction of the reinforcement are

shown in Figures 5.6 to 5.9. There are several interesting features of these stress-

strain curves which deserve special consideration.

When the 0 ° curve is carefully examined, three distinct regions are noted

(Fig. 5.10). On initial application of the tensile load, both matrix and fiber respond

completely elastically (Stage I). Eventually, the yield strength of the matrix is

exceeded and the matrix begins to flow plastically (Stage II). In this stage the

matrix contributes little to the elastic modulus. The slope of the stress-strain curve

in this region is referred to as the system's secondary modulus and was measured

to be 83% of the initial modulus. The system experiences permanent deformation

because of matrix flow and breakage of severely weakened filaments. This second

stage continues until fiber breakage is encountered, whereupon the slope of the

stress-strain curve is again observed to decrease (Stage III), eventually resulting in

composite failure. Because of the extreme brittleness of the fibers in the composite,

the extent of Stage III is limited. In cases where the yield strain of the matrix

exceeds the failure strain of the fiber, Stage II-type behavior will not be observed.

The transition from Stage I to Stage II depends on the yield strain of the metal

matrix and the magnitude of residual consolidation stresses. The three stages of

strain response to increasing tensile loading can be termed as "elastic-elastic" (Stage

I), "elastic-plastic" (Stage II) and "plastic-plastic" (Stage III), respectively [52].

Figures 5.6 and 5.7 show stress-strain curves for the SiC/A/ composite at

room temperature, 24 ° C (75 ° F), and at 288 ° C (550 ° F). Both curves exhibit a

linear elastic portion that extends up to strains e = 0.12 percent and 0.07 percent,

for temperatures of 24 ° C and 288 ° C, respectively. Note that the stress-strain
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Specimen Under Tensile Loading at 24 °C (75 °F).
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curvesup to failure deviatelittle from linearitywhich is attributedto thefact that

mostof the applied load is carriedby the fibersdueto their muchhigherelastic

modulus. Thedeviationfrom linearity is morepronouncedat 288° C. Thestress

vs. transversestraincurveat 24° C and288° C (Figures5.6 and 5.7) arealmost

linear up to fracture. Figures 5.11 to 5.13 show scanning electron

photomicrographsof the tensile fracture surfaceof unidirectional SCS-2/6061

aluminum compositespecimens.Extensivefiber/matrix interfacedebondingis

observedin the photographs. In addition, a large amount of fiber pullout is

apparent,indicatedby thenumberof emptyfiber sites,sincethepulled-out fibers

did notremainintactafterfailure. A varietyof fiberdamageis observed,including

fiber splitting,fiber shatteringandpulled-outcores.

At roomtemperaturetherule-of-mixturespredictionof 1531MPa(222ksi)

for thecompositetensilestrengthisveryclosetotheexperimentallyobtainedoneof

1524MPa(221ksi). Furthermore,at 288° C(550° F) thepredictedstrengthof the

compositeis 1463MPa(212ksi) andtheexperimentalone 1241MPa(180ksi). It

is seenthat the observedcompositestrengthat 288° C is lower than therule-of-

mixturesprediction. However,thedirectapplicationof filament tensilestrengthis

oftenmisleading [53], particularly at elevatedtemperatureswherethe chemical

reactivity of the filament with the atmosphereor the metalmatrix introducesan

additionalcomplexity.

Thetransversepropertiesof SiC/A/ composite,tensilemodulus,strength,

andductility, areall lower than longitudinalproperties. The lower modulusand

strengtharein partdueto thefact thatthe isostraincriterionno longerapplies.That

is the matrix is free to flow nearly independentlyof the fibers. Under these

conditionsit becomesmoredifficult to predictcompositestiffnessandstrength.If

thefibersarewell bondedto thematrixandfreeof defects,thetransversestrength

shouldapproachor exceedthe strengthof thebulk matrix alloy. Unfortunately,
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Fig. 5.11 Scanning Electron Photomicrograph of the Tensile Fracture Surface

of [08] SCS-2/6061 Aluminum Composite Specimen Showing

Debonding at Fiber/Matrix Interfaces.
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Fig. 5.12 Scanning ElectrOn Photomicrograph of the Tensile Fracture Surface

of [08] SCS-2/6061 AI uminum Composite Specimen Showing Fiber

Pullout.
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Fig. 5.13 Scanning Electron Photomicrograph of the Tensile Fracture Surface

of [08] SCS-2/6061 Aluminum Composite Specimen Showing Fiber

Damage.
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these strength levels are not usually attained in SiC/A/ composites at room

temperature. The explanation for low transverse strength of SiC/A/ composite

seems to be related to the transverse strength of the fiber and partial debonding. If

the fibers split and debond under transverse tensile loading at a low stress level, the

load carrying cross section would be sharply reduced and stress concentrations

would be introduced which would account for the observed low composite strength

and ductility. Examination of the transverse tensile fracture surface establishes the

degrading influence of fiber splitting and debonding. For a weak matrix, transverse

failure is controlled by matrix strength and failure takes place predominantly

through the matrix. If the matrix is solution treated and aged so that it can introduce

higher loads into the fibers, transverse failure can be controlled by filament splitting

and fracture occurs through fibers as in the case of SiC/A/ composite. Also, the

relative area of split filaments on the fracture surface is found to be larger than the

Vf of the composite, which indicates that the fibers offer the least resistance to crack

propagation and control of composite failure. Also, fiber splitting has been

observed only at, or in the immediate vicinity of, the composite fracture surface.

These observations reflect the susceptibility of aluminum alloy to severe stress

concentrations associated with split SiC filaments and their probable low transverse

strength. Also, the strength reduction can be attributed to structural imperfections

or initial filament quality or consolidation technique.

The effect of temperature was further studied by conducting tests at 399 ° C

(750 ° F). Longitudinal and transverse stress-strain curves at three test temperatures

are shown in Figs. 5.14 and 5.15.

In-plane shear properties were obtained by means of the 10 ° off-axis test

[50]. In-plane shear stress-strain curves at three different temperatures are shown

in Fig. 5.16. The initial shear modulus is 34.5 MPa (5 Msi) or 33% higher than the

shear modulus of 6061-T4 aluminum. The measured shear strength was
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approximately 51% lower than that of the matrix material. The fracture surface is

parallel to the fiber, that is at 10 ° with the direction of loading. It indicates that the

failure is dominated by debonding of the fiber under shear loading. This interfacial

debonding reduces the shear loading cross section in the matrix, thus propagating

the matrix crack to failure. If the fibers were perfectly bonded to the matrix without

any defects, the shear strength of the composite would be close to the shear strength

of the matrix assuming that the fiber has a higher shear strength than the matrix.

The residual stress in the composite also plays a role in shear strength reduction.

Figure 5.17 shows the variation with test temperature of the longitudinal

tensile strength of SiC/A/ composite and aluminum for comparison purposes. It is

seen that the composite retains its longitudinl strength exceptionally well up to

399 ° C (750" F). At higher temperatures the composite tensile strength is still much

higher than that of the aluminum alloy. The observed composite strengths at high

temperature are lower than the rule of mixtures prediction. This is due to the

influence of residual stresses. Probably the strength reduction of the SiC fiber with

temperature is the other cause, although this is not clear. As mentioned previously,

the direct application of fiber tensile data to composite strength prediction is

oftentimes quite misleading, particularly at high temperatures where the chemical

reactivity of the fiber with the atmosphere or metal matrix introduces an additional

complexity.

The temperature dependence of the transverse strength is shown in Fig.

5.18. The transverse strength drops more severely than the longitudinal strength

with temperature because of the large reduction in strength of the matrix with

temperature. Examination of the transverse tensile fracture surface of the specimen

tested at 750 ° F shows less fiber splitting and debonding and more failure in the

matrix, because at high temperatures the matrix becomes relatively weaker than at

room temperature so that the transverse failure of the composite at high temperature
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is more matrix deominated. At room temperature the transverse strength is only

about 30% of that of the matrix but at 750" F it is very close to that of the matrix.

Figure 5.19 shows the change of in-plane shear strength with temperature.

The in-plane shear strength drops very much with temperature somewhat similarly

as the transverse strength because both of them are matrix dominated properties.

Not much change in the longitudinal modulus is observed. The initial

modulus seems to remain stable with a little drop at 399" C (750 ° F), but the

secondary modulus increased slightly at 288" C (550 ° F) which is probably

associated with relief of residual stresses, both in the matrix and fiber, but this

behavior is not clearly understood.

The transverse modulus drops gradually with temperature. Figure 5.20

shows the change of transverse modulus with test temperature. For perfect

bonding of fiber and matrix the transverse modulus is expected to remain

unchanged. But because of the temperature rise and the few hours of exposure to

high temperature, the interfacial zone is extended by chemical reaction between fiber

and matrix degrading the properties of the interface. This causes the drop in

transverse modulus.

Figure 5.21 shows the shear modulus change with temperature. The initial

shear modulus of the composite remains almost unchanged with temperature. The

shear modulus of the fiber is unknown but from the above result it seems that the

shear modulus of the fiber changes very little with temperature.

Table 5.1 summarizes the measured mechanical properties of SiC/A/

composite at three different temperatures.

5.4 Creep Behavior

Creep tests on unidirectional SiC/A/ composite were conducted in a similar

manner as in the case of 606 l-T4 aluminum described earlier. For the composite
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Table 5.1 Mechanical Properties of Unidirectional SiC/A/ Com _osite at Different Temperatures

Property 24 (75)

Temperature, T, °C (° F)

288 (550) 399 (750)

",,,1

Fiber Volume Ratio, Vf

Density, p, g/cm3 (lb/in3)

Longitudinal Modulus, El, GPa (Msi)

Transverse Modulus, E2, GPa (Msi)

In-Plane Shear Modulus, G12, GPa (Msi)

Major Poisson's Ratio, v12

Longitudinal Tensile Strength, Fit, MPa (ksi)

Transverse Tensile Strength, F2t, MPa (ksi)

In-Plane Shear Strength, F6, MPa (ksi)

Ultimate Longitudinal Tensile Strain, Eult

Ultimate Transverse Tensile Strain, eu2t

Ultimate In-Plane Shear Strain, _ta6

Longitudinal Thermal Expansion Coefficient,
oq, 10-6/°C (10-6/°F)

Transverse Thermal Expansion Coefficient,
_2, 106/°C (10-6/°F)

0.44

2.86 (0.103)

207 (30)

110 (16.0)

34.5 (5.0)

0.28

1,622 (235)

80.0 (11.6)

81.4 (11.8)

0.0096

0.0011

0.0280

5.9 (3.3)

16.0 (8.9)

0.44

2.86

207

76.6

34.5

0.29

1,208

52.4

36.6

0.0066

0.0038

0.0201

(0.103)

(30)

(11.1)

(5.0)

(175)

(7.6)

(5.3)

0.44

2.86 (0.103)

207 (30)

73.1 (10.6)

34.5 (5.0)

0.32

1,187 (172)

24.2 (3.5)

14.5 (2.1)

0.0063

0.0101

0.060



the major factor influencing its creep behavior is the internal geometry. For

unidirectional reinforcement with continuous fibers, the creep rate is minimum in

the fiber direction and maximum at an angle to the fiber. The reason is that

longitudinal creep of the composite is effectively inhibited by the fibers due to the

extremely high elastic modulus and negligible creep properties of the fiber.

However, transverse creep is significant even at an applied stress level below that

necessary to cause creep in the unreinforced aluminum. Because creep rate is

dependent on stress, the strain and strain rate in the vicinity of a fiber will be high

due to stress concentration. This will increase the number and size of

microstructural faults, which in turn further decrease the local cross sectional area

and increase the strain rate. Additionally, microstructural defects as well as other

heterogeneities, can act as a site for necking.

Creep tests were conducted under transverse and in-plane shear loading.

No creep tests were conducted in the longitudinal (fiber) direction because very little

creep is expected in that direction as discussed before. Figure 5.22 shows the creep

curves and Figure 5.23 shows the creep rate curves of the composite in the

transverse direction. The transverse creep compliance of the composite is shown in

Figure 5.24. The shear creep curves and corresponding strain rate curves are

shown in Figs. 5.25 and 5.26. The shear creep compliance of the composite is

shown in Fig. 5.27.

The prediction of composite creep behavior on the basis of creep properties

of the constituents is being investigated by several investigators. However, the

problem is difficult because of the nonuniform stress fields involved under

transverse loading and shear.

5.5 Non-Isothermal Creep Behavior

Many composites in service are exposed to fluctuating or varying
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thermomechanicalloading. It hasbeenreportedthatcompositescreepandexhibit

dimensionalchangesundervery low stresslevelswhenexposedto thermalcyclic

conditions.Thus,it is very importantto studyhow thermalcycling affectscreep

behaviorin service. Suchastudyshouldtakeintoconsiderationthelocal stresses

andstrainsproducedby thermalexpansionmismatchbetweentheconstituents,ona

microscopiclevelandbetweenvariouslyorientedpliesonamacroscopiclevel.

UnidirectionalSiC/A/ specimensweretestedundertransverseandin-plane

shearcreepunderthermalcyclic conditions. A small furnace was designed and

built for the purpose in order to accelerate the thermal cycling. Temperature was

measured by thermocouples welded to the specimen and heavily insulated with

ceramic cement. A thin aluminum foil was used to cover the insulation and cut

down the radiant heat that affects correct measurement of specimen temperature.

The shielding of the thermocouples was found to be very important for correct

measurement of specimen temperature when not embedded in the specimen.

Thermal cycling was achieved by a system consisting of a controller with timers

and relays. Specifically, the furnace operates until a preset high temperature is

reached. At this point, the furnace switches off, and the specimen is cooled by

forced air convection until the specimen temperature reaches a preset low

temperature. Then, the timer resets, and the furnace is switched on again. Thus,

the upper temperature of the cycle and the cycle period are controlled directly.

Multilayer adhesive films were used to bond tabs to the specimens to cut down heat

conduction from the specimen to the grips. This helped a great deal to reduce

temperature gradients in the specimen.

A limited number of tests was conducted to study the effect of thermal

cycling on creep strain in a transversely loaded composite for various applied stress

levels. A thermal cycling range of 177 - 232 ° C (350 - 450 ° F) and a frequency of

approximately 14 cycles per hour were selected. The creep strain for a specimen
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loaded transversely under a constant stress of 17.2 MPa (2.5 ksi) and cycled over

the temperature range above is shown in Fig. 5.28. The isothermal creep strain

under the same load but at 232 ° C (450 ° F) is shown in Fig. 5.29. The upper

envelopes of both records are compared in Fig. 5.30 where it is clearly shown that

thermal cycling increases creep deformation significantly. Similar results were

obtained for an increased stress level of 34.5 MPa (5.0 ksi) as shown in Figs. 5.31

and 5.32. All results for transverse creep are combined in Fig. 5.33 along with

isothermal creep results at 399 ° C (550 ° F). It is seen that the creep strain obtained

under thermal cycling betwen 177 and 232 ° C (350 and 450 ° F) is still higher than

the isothermal creep obtained under the same stress at 399 ° C (550 ° F).

Similar creep tests wre conducted under in-plane shear using the 10 ° off-axis

specimen. Figure 5.34 shows that the creep strain under cyclothermal conditions is

larger than that under isothermal conditions as in the case of transverse loading.

However, the difference between the two types of creep under shear loading is not

as dramatic as under transverse loading. This could be attributed to the higher

stress concentration around the fiber and the higher local stresses under transverse

loading.
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6. APPLICATION OF THERMOVISCOPLASTIC NONLINEAR

CONSTITUTIVE RELATIONSHIPS (TVP-NCR) AND
METCAN COMPUTER CODE

The obtained experimental results (Sections 4 and 5) were used to determine

the unknown exponents of the thermoviscoplastic nonlinear constitutive

relationships (TVP-NCR) discussed in Section 3. In the present work only the

temperature and stress dependence of the mechanical or thermal properties of the

composite and its constituent matrix are considered. Therefore, the TVP-NCR

expressed by equation (3.1) is reduced to only two terms on the right hand side as

follows:

where

P [ Tu- Tln[ Fu- (yl m
--P_o-LT_---_J L_J

p ._.

Po =

Yu -

T =

Y o =

current property of interest

corresponding property at reference conditions

ultimate temperature

current temperature

reference temperature at which Po is determined

(6.1)

F = fracture stress determined at To

Cro = reference stress at which Po is determined

= current stress

At least squares method was used for the determination of the unknown

exponents of equation (6.1) from the experimental data. From equation (6.1) we

obtain

Q = log[p_p_]_ n i [ Tu- T ] F-t_
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Consider the variation of property P with stress, ¢r, for a number of

temperatures, T. If N values of P are selected from these curves the least squares

method requires that for a best fit

N

E %2 _. minimum
j=l

(6.3)

The necessary conditions for tile existence of this minimum are

N _Q]ZQJ =o
j= l On (6.4a)

N _Qj

_IQj =0
j= _m (6.4b)

Equations (6.4) yield

N N N

n Z Tj2+m Z crjTj= Z PJTJ

j=l j=l j=l
(6.5a)

N N N

n Z crjTj+m Z _JJ = Z PJ_J

j=l j=l j=l
(6.5b)

where

= (6.6)

_ rTo-  ]
TJ =l°g/_ ] (6.7)

_j = log IF- _oJ (6.8)

A repeating subscript in equations (6.5) does not imply summation of the respective

terms over the values of the subscript. Equations (6.5) were incorporated into a

computer program and were used for the determination of the values of exponents

m and n for property P fi'om the experimentally obtained data.

Using the previously developed procedure the coefficients m and n for a

number of mechanical and thermal properties of the SiC/A/ composite and 6061-T4
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aluminum were determined. The properties investigated were

(a) For Aluminum 6061-T4

E = Modulus of Elasticity

v = Poisson's Ratio

ot = Coefficient of Thermal Expansion

Cru = Ultimate Stress

(b) For SiC/A/ metal matrix composite

El, E2 = Longitudinal and transverse Young's moduli, respectively

t_l, t_2 = Longitudinal and transverse coefficients of thermal

expansion

Values of the exponents m and n for the aluminum and the composite are

given in Tables 6.1 and 6.2 for three different selected values of Tu. The first

selected ultimate temperature of 593 ° C (1100 ° F) was taken to be the melting

temperature of the aluminum matrix in the composite. The other two values of Tu

equal to 1093 ° C (2000 ° F) and 1649 ° C (3000 ° F) were chosen to check the

sensitivity of the exponent values to the selection of ultimate temperature. In the

case of the SCS-2 fiber all properties were assumed to be independent of

temperature and stress, therefore, the coefficients m and n were taken equal to zero.

Another method that can be used for determination of the unknown

exponents is the graphical metlmd. In equation (6.1), for example, if T = To, only

properties at the reference temperature are considered and thus the temperature

dependent term becomes unity. Then, the unknown exponent m is obtained as the

slope of the log (P/Po) versus log (F - _) (F - _o) curve. A similar procedure is

used for determination of exponent n.

The material properties under investigation can be expressed as follows:
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Table 6.1 Valuesof theExponentsnandm of theTVP-NCR for Alurninum 6061-T4

Material Property, P Temperature, Tu

oC °F

n rn

Tangent Modulus, Et 593 1100 1.3046 3.1034

Coefficient of Thermal

Expansion, a
593 1100 -0.2212

1093 2000 -0.5256
1649 3000 -0.8522

Poisson's Ratio, v 593 11130 -0.5045

1093 2000 -1.0530
1649 3000 -1.6583

-0.2251

-0.2233
-0.2227

Ultimate Stress, Cu 593 1100 0.8252

1093 2000 1.8110
1649 3000 2.8857
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Table 6.2 Values of the Exponents n and m of the TVP-NCR for SiC/AI Composite

Material Property, P Temperature, Tu

oC °F

n m

Longitudinal Tangent
Modulus, Elt 593 1100 -0.1226 0.0717

1093 2000 -0.2693 0.0717
1649 3000 -0.4306 0.0717

Transverse Tangent
Modulus, E2t 593 1100 0.4636 0.3792

1093 2000 0.9761 0.3910
1649 3000 1.2770 0.4120

Longitudinal Coefficient of

Thermal Expansion, oq 593 1100 0.9718

1093 2000 2.3094
1649 3000 3.7441

Transverse Coefficient of

Thermal Expansion, _2 593 1100 -0.2827

1093 2000 -0.6718
1649 3000 -1.0892
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i,

]

I InIF- ]m
E = Eo IT u _ To j LF - OoJ (6.9)

[T.-T]n[F - o] m

V=Vo IT u-T oj IF -Oo] (6.10)

°
= 0_o [Tu- To] (6.11)

[Tu - To J (6.1 2)

Equations (6.9 and (6.10 represent the temperature and stress dependence of the

material modulus and Poisson's ratio while equations (6.11) and (6.12) represent

only the temperature dependence of the coefficient of thermal expansion and

ultimate stress.

The stress-strain curves of the SiC/A/ composite and Aluminum 6061-T4

were obtained from the determined exponents (n, m) of the tangent modulus as

follows:

do = Et de

[Tu-TIn [Fu-Ol m
do = Eo [Tu---_o] [Fu----_oJ de

f - r'ru-'rlnf 11 do = 12,o[Tu___u___[__ooj (F (_)m(F-o) m

F l-m- (F- O) 1-m Eo [ Tu- T /n
1 - m - (F - Oo)m Wu - To/ e

(F - oo)m {Tu - Toln (Fl-m - (F - o)l-m.)
c- Eo _/ ] -m (6.13)

By using equations (6.9) through (6.13) along with the calculated values of

the exponents n and m (Tables 6.1 and 6.2) the material properties under

investigation were obtained and compared with the experimentally measured ones

in the following figures:
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a. ForunidirectionalSiC/A/ composite

(1) Longitudinalstress-straincurvesfor temperaturesof 24° C (75 ° F)

and 288 ° C (550 ° F) are shown in Figures 6.1 and 6.2, respectively.

(2) Transverse stress-strain curves for temperatures of 24 ° C (75 ° F)

and 288 ° C (550 ° F) ale shown in Figure 6.3.

(3) Longitudinal and transverse coefficients of thermal expansion as a

function of temperature are shown in Figures 6.4 and 6.5.

b. For aluminum 6061-T4

(1) Stress-strain curves for temperatures of 24 ° C (75 ° F), 121 ° C

(250 ° F), 149 ° C (300 ° F), 177 ° C (350 ° F) and 232 ° C (450 ° F) are

shown in Figures 6.6 through 6.10.

(2) Coefficient of thermal expansion versus temperature curve is shown

in Figure 6.11.

(3) Ultimate stress versus temperature curve is shown in Fig. 6.12.

From the above figures the following observations can be made:

(1) The exponents m and n take positive or negative values depending

on the material property under investigation. No general rule assigning positive or

negative values can be stated.

(2) Predictions of the thermomechanical behavior of composite and

aluminum matrix by the TVP-NCR is generally good for most properties.

Deviations, however, between experimental and predicted results appear in cases

where the form of the experimental curve deviates from the generic form of the

TVP-NCR expressed in terms of powers of dimensionless products.

(3) The exponent n for the coefficients of thermal expansion of the

composite was found to be very sensitive to the selected value of the ultimate

temperature, Tu. On the other hand, the exponent m for the mechanical properties

was not affected by the selection of Tu.

.e-.
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(4) For material properties whose variation with a variable does not

comply with the end conditions dictated by the TVP-NCR (the end value of a

quantity should be zero or infinite) poor agreement between experimental and

predicted results is obtained.

The modified TVP-NCR proposed in Section 3 were used to study two

material properties (secant modulus and Poisson's ratio) which do not satisfy the

end conditions of TVP-NCR developed by Chamis [ 17] at the ultimate value of a

variable. The modified TVP-NCR used in the present analysis are of the following

form:

AP IF-
A¥o=,To-ToJLF (6.14)

where,

AP = P - Pu

APo = Po - Pu

The stress-strain curves for the SiC/A/ [08] and [908] composite and

Poisson's ratio versus stress curves for Aluminum 6061-T4 at two temperatures

were obtained from the following equations

(y
13=

(Eo_Eo)VTu-TI°[y- =]m+Eu
LTu - To] IF - (Yo] (6.15)

v =(Vo - 0.5) [_] IF-Co.lTu-Tn [F-_Er__]m + 0.5 (6.16)

By using equations (6.15) and (6.16) along with the recalculated values of

the exponents n and m (Table 6.3) the material properties under investigation were

obtained and are compared with the experimentally measured ones in Figures 6.13

through 6.17. It is seen from these figures that the predictions for the SiC/A1

composite from the modified TVP-NCR are in very good agreement with the

experimental results. In addition, it was found that the predictions from the
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Table 6.3 Values of the Exponents n and m of the Modified TVP-NCR for SiC/A1
Composite and Aluminum 6061-T4.

Material Property, P

siC/AI Composite

Temperature, Tu

oC oF

n m

Longitudinal Secant
Modulus, E Is 593 1100 -0.9555 1.4698

1093 2000 -2.0992 1.4698
1649 3000 -3.5668 1.4698

Transverse Secant

Modulus, E2s 593 1100 -0.1685 0.4829
1093 2000 -0.4487 0.4892
1649 3000 -0.7487 0.4907

Aluminum 606l-'I"4

Poisson's Ratio, v 593 1100 3.1123 2.6180
1093 2000 6.5084 2.6061
1649 3000 10.2562 2.6024

134



,.p4

g]

250 ---

200

150

100

50-

0
0.0

-1500
[]

/f

-/

J
,Y

i000 i_

500 / ..... Experiment

°°°°°..... _oJ _ _-_,__- _
i I i I i I i I i

0.2 0.4 0.6 0.8 1.0

Strain, _, (_)

Fig. 6.13 Stress-Strain Curves for [08] SCS-2/6061 Aluminum Composite

Specimen Under Uniaxial Tensile Loading at 24 °C (75 °F) as

Obtained Experimentally and Predicted by the Modified TVP-NCR.

135



200

G

&

0

150

100

I000

O0

eriment
-NCR

Modified TVP-NCR

0 I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain, _, (_)

Fig. 6.14 Stress-S train Curves for [08] SCS-2/6061 Aluminum Composite

Specimen Under Uniaxial Tensile Loading at 288 °C (550 °F) as

Obtained Experimentally and Predicted by the Modified TVP-NCR.

136



19
f..4

r.,O

14

12-

10-

_

-75

-50

m

4-

2-

0 I i
0.00 0.02 0.04

_B

_eriment- - - _-NCR
o ,I a _ Modified TVP-NCR

I i i

0.08 0.08 0.I0 0.12

Strain, s, (%)

Fig. 6.15 S tress-S train Curves for [908] SCS-2/6061 Aluminum Composite

Specimen Under Uniaxial Tensile Loading at 24 °C (75 °F) as

Obtained Experimentally and Predicted by the Modified TVP-NCR.

137



[ '

0.8

0.5-

mm 0.4

I ,'
0.3-"

¢0

0.2
0

lvfg. 6.16

Experiment
.... Modified TVP-NCR

/// /j

///////l_

/
/

I00 200

1 i I l 1 I
10 20 30 40

Stress, o', (Ksi)

Poisson's Ratio versus Stress Curves for Aluminum 6061-T4

Specimen at 121 °C (250 °F) as Obtained Experimentally and

Predicted by the Modified TVP-NCR.

138



0.6

2a

o"
° P...I
,,l.a

o
gl
gl

.p..I

O

I

e_

0°5 -

0.3 -

0.2
0

Experiment
Modified TVP-NCR

/

/

/

7
J

J

J

J

/
/

/
/

/

/

200
I

IO0
I

iI I i I i

10 20 30 40

Stress, c, (Ksi)

Fig. 6.17 Poisson's Ratio versus Stress Curves for Aluminum 606 l-T4

Specimen at 177 °C (350 °F) as Obtained Experimentally and

Predicted by the Modified TVP-NCR.

139



' :i _

modified TVP-NCR were independent of the chosen value tbr ultimate temperature

(Tu).

The computer code (METCAN) developed at NASA Lewis Research Center

[18] to perform nonlinear analyses of fiber reinforced metal matrix composites was

used for the prediction of the thermomechanical behavior of the SiC/A/ composite

under investigation. The METCAN code incorporates the TVP-NCR given by

equation (6.1) Together with various levels of composite mechanics models [39]

for the analysis of behavior of metal matrix composite materials and structures.

Introducing the previously found values of the exponents n and m for the aluminum

matrix into METCAN the longitudinal and transverse stress-strain curves of the

unidirectional SiC/A/ composite were predicted. The corresponding exponents n

and m for the fiber were taken as zero in METCAN since the SiC fiber remains

elastic up to failure and its thermomechanical behavior is independent of

temperature. Results are shown in Figures 6.18 and 6.19 for temperatures 24 ° C

(75 ° F) and 288 ° C (550 ° F), respectively. The experimental results are seen to be

in good agreement with the theoretical predictions from METCAN.

Residual stresses are generated during cool-down from the fabrication

temperature as a result of the large difference in thermal expansion coefficients of

the silicon carbide fiber and aluminum matrix. These differences in expansion

coefficient can result in compressive longitudinal and radial residual stresses in the

filaments and corresponding tensile stresses in the matrix. The METCAN code

was implemented to predict these stresses and to determine their influence on the

behavior of the composite under subsequent loading. Results were obtained for

two consolidation temperatures, 260 ° C (500 ° F) and 538 o C (1000 ° F). Table 6.4

gives the axial residual stresses in the fiber and matrix as predicted by METCAN

when the composite is cooled down to room temperature from these two fabrication

temperatures.
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Table 6.4 Axial Residual Stresses in SCS-2 Fiber and Aluminum 6061-T4 Matrix

as Predicted by METCAN Computer Code

Fabrication Fiber Matrix

Temperature, Yf - O'rzf o'r_an

cC °F MPa ksi MPa ksi

260 500 105.24 15.26 82.76 12.00

538 1000 134.55 19.51 105.72 15.33

The influence of these residual stresses on the composite behavior is as

follows. Since the filaments are initially loaded compressively, the composite

failure strain in tension is higher than would be predicted if residual stresses were

ignored. As the composite is loaded in tension, the filaments are initially unloaded

from compression and subsequently loaded in tension. Therefore, the filament

strain-to-failure is increased. In addition, since the filament tensile failure strain

determines composite failure strain and consequently the tensile strength of the

composite, this increased strain-to-failure will result in higher composite tensile

strength. Furthermore, the initial load carrying capacity of the matrix is higher as a

result of prior strain hardening. The strain hardening matrix can make a larger

contribution to composite strength. These effects are shown schematically in Fig.

6.20 [54].

In Fig. 6.21 the experimentally obtained stress-strain curves of a

unidirectional SiC/A1 [08] composite tested in tension at 24 ° C (75 ° F) are shown

along with the predicted stress-strain curves fi'om METCAN. The first predicted

stress-strain curve was obtained by loading the composite without considering any

previous processing history. Therefore, no residual stresses were taken into
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account in this case. For the prediction of the secondand third curves, the

compositewas first cooledto roomtemperaturefrom fabricationtemperaturesof

260° C (500° F) and538° C(1000° F) andsubsequentlyloadedin tensionto failure.

It is observedin Figure6.21thatwhenconsolidationstressesaretakeninto account

the predicted composite behavior exhibited no plastic deformation during

subsequentloadingin tension.In addition,betterpredictionof thecompositeactual

behavior under tensile loading was obtained when no residual stresseswere

consideredin METCAN. This prediction coupled with the aforementioned

observationleadsto theconclusionthat matrix relaxationmusttakeplacein the

actualcompositesystem.

At higher temperaturesthe influence of residual stressesand matrix

constrainsaremuchlesspronouncedthanat roomtemperature.It is seenin Figure

6.22thatbothpredictions(with andwithout residualstresses)by METCAN arein

very goodagreementbecauseMETCAN accountsfor therelief of thefabrication-

inducedresidualstresseswhenthecompositeis heatedto its testingtemperatureof

288 o c (550 o F).
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7. THERMAL STRESS ANALYSIS OF SiC/A/ COMPOSITE

7.1 Introduction

In the metal-matrix composite, the ceramic reinforcement and the metal

matrix usually have large mismatch of thermal expansion coefficients in one or

more directions. A change of temperature results in thermal constraint stresses

which contribute significantly to the stress state of the constituents. For example,

high residual thermal stresses are developed in the matrix during cooling from

consolidation temperatures which may result in premature yielding even before

application of external loading. The study of the thermal expansion behavior and

the resulting thermal stresses is an important step in the characterization of the

composite.

A number of studies have been devoted to the problem of thermal expansion

behavior of MMC's. Levin [7] derived the macroscopic coefficients of thermal

expansion (CTE's) of an elastic two-phase composite with perfectly bonded

isotropic phases from the thermoelastic constants of the phases and the macroscopic

elastic moduli of the composite. Bounds on the CTE's of fiber reinforced

composites were given using bounds for the macroscopic elastic moduli of the

composite. Expressions for CTE's of fiber reinforced composites with doubly

periodic array of circular hollow or solid fibers were derived by Van Fo Fy [8,9]

who performed a thorough stress analysis. Schapery [10] calculated upper and

lower bounds of multiphase media by employing extremum principles of

thermoelasticity. Levin's results were extended to two-phase composites with

anisotropic constituents by Rosen and Hashin [11]. They also gave bounds for the

CTE's of anisotropic composites with any number of anisotropic phases. Dvorak

and Chert [ 12] presented exact expressions for the CTE's of a composite consisting

of three cylindrical perfectly bonded phases having transverse isotropy and

arbitrary transverse geometry.
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The above works were concerned with the micromechanical prediction of

the linear thermal expansion behavior of composites. However, when the

composite is subjected to temperatures above a critical value, plastic stresses are

developed in the matrix and the strain versus temperature curve of the composite

becomes nonlinear. A relatively limited number of investigations has dealt with the

problem of nonlinear thermal expansion behavior of composites. Hoffman [13]

studied the elastic and elastoplastic stresses in tungsten fiber reinforced 80 Ni + 20

Cr matrix composites subjected to heating or cooling in the range of 27 to 1090 ° C

(80 to 2000 ° F). Dvorak et al. [14] determined the initial yield surfaces of

boron/aluminum composites for mechanical and thermal loading using a finite

element analysis of a regular hexagonal array model. They found that small

temperature changes in the range of 10 to 38 ° C (50 to 100 ° F) can introduce plastic

strains in composites with a matrix tensile yield stress of the order of 10 ksi.

These plastic strains were proportional to the yield stress. Flom and Arsenault [ 1]

determined experimentally the plastic strains and the elastic-plastic boundaries

produced in the aluminum matrix around a short SiC cylinder during a thermal

cycle and developed a theoretical model for the prediction of the plastic zone. Kural

and Min [15] presented an elastoplastic theoretical model for the study of plastic

deformation in the matrix material of graphite fiber reinforced metal matrix

composites caused by thermal cyclic loading and residual thermal stresses.

Experimental results verified the elastoplastic stresses predicted by the theory. In

another paper Min and Crossman [16] used the above theoretical model for the

study of the thermomechanical behavior of Gr/A/ composites. Gdoutos et al. [55]

developed two elastoplastic micromechanical models for thermal stress analysis,

one based on a one-dimensional rule of mixtures and the other on a composite

cylinder. An elastoplastic analysis was also conducted by Chun et al. [56] based
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on a successive approximation scheme with a Prandtl-Reuss plastic flow model and

the von Mises criterion.

7,2 Rule of Mixtures Model (ROM) [55]

A one-dimensional rule-of-mixtures (ROM) model was used for the

prediction of the thermal expansion behavior of the composite based on the

constituent properties. Emphasis was placed on the prediction of the nonlinear part

of the longitudinal and transverse strain-temperature curves.

The silicon carbide fiber is assumed to be isotropic and linear elastic up to

failure. Its stress-strain-temperature behavior is given by

of
ef = _ + o_fAT (7.1)

where ef and of are the axial strain and stress, Ef the modulus of elasticity, ocf the

CTE and AT the temperature change. It is assumed that oq is constant.

The aluminum matrix has a yield point much lower than the fracture stress

of the fiber and exhibits a pronounced plastic deformation prior to fracture. Its

thermomechanical behavior is described by the Ramberg-Osgood equation:

_ (3"m
Em - _ + O_m AT

(3m -<(_my (7.2a)

Em-" _ [O'm+ 13[(C3_m_)n-1] _my]+ O_mAT _m> _my
(7.2b)

where Em and (Ym are the strain and stress, Em the modulus of elasticity, Crmy the

proportionality limit of aluminum, 13and n material parameters and o_m the

coefficient of thermal expansion. The quantities CYmy, _, n and CXmare functions of

temperature.

From the isostrain hypothesis and the equilibrium equation along the fiber

direction the longitudinal stresses in the fiber, cref, and the matrix, (Yem, for linear

elastic behavior are given by
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ff _ = (O_m - _f) Ef Em Vm AT
Em Vm + Ef Vf (7.3)

fie _ _
(_m - _f} Ef Em Vf AT

Em Vm + Ef Vf (7.4)

where Vf and V m are the volume fractions of the fiber and matrix, respectively.

The temperature at which the matrix starts to deform plastically is

determined from the relation

(Y_n = ffmy (7.5)

For higher temperature changes the matrix yields and the stress ffm in the

matrix is determined from the following equation

[ (gm)(Vm)]Ef(_ ffmyl-n) ff n + 1 + (Ym + [(O_m - O_f}Em AT- 13 ffmy] = 0
(7.6)

The stress in the fiber is given by

(_f = - (_m (V'_-f) (7.7)

Having determined the stresses in the matrix and the fiber the longitudinal

strain of the composite is determined from either equation (7.2a) or (7.2b). The

transverse strain of the composite is calculated by

£t = Etf Vf + Etm Vm (7.8)

where the transverse strains in the fiber, Eft, and the matrix, Etm, are given by

vf

Etf "-- _ff fie + _f AT (7.9a)

Vm

Etm = - _m ffm + O_mAT (7.9b)

where vf and Vm are Poisson's ratios of the fiber and matrix, respectively. While vf

is constant, Vm increases in the nonlinear range from its elastic value up to the

limiting value of 0.5 for an incompressible material. In the transition region Vm is

determined as follows [57]:
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Vm = 0.5 - (0.5 - V m) E___s
E

(7.10)

where v' m is the elastic value of Poisson's ratio and E and Es are the elastic and

secant moduli, respectively.

7.3 Composite Cylinder Model (CCM) [55]

In the two-material composite cylinder model (CCM), the representative

volume element for the micro-mechanical analysis of low fiber volume composites

consists of an inner solid cylinder, simulating the fiber, and an outer hollow

cylinder, representing the matrix (Fig. 7.1). A fiber-reinforced composite is

arbitrarily characterized as low fiber volume if the fiber volume ratio is less than 65

percent. It is assumed that the two components are perfectly bonded at the

interface. The CCM has been proposed by Hill [58], Hashin and Rosen [59] and

Whitney and Riley [60]. The model has been used for the study of the elastoplastic

behavior of two- and three-material composite cylinders by Hecker et al. [61,62].

In the present study the CCM is used for the study of the thermal expansion

behavior of a SiC/AI composite. The cases of elastic and elastoplastic deformation

of the matrix cylinder are considered separately. The inner cylinder always remains

linearly elastic.

When both components of the composite cylinder are linearly elastic, the

following equations for the radial displacement u, the radial and circumferential

stresses _r and % and the axial stress _z are obtained from the thermoelastic

solution [61].

u=Ar+ B
r

[ B +VEz-(1 + v) o_ATl(Yr= K A- (1- 2v) ) r--_

f B +v gz-(1 +V) O_AT1_0 =K A+(1-2V))r 2
(7.11)
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(_z=K'2VA+(I-V) ez-(l +v) ocAT]

In these equations r is the radial distance from the center of the cylinder, Ez is the

axial strain, A and B are constants to be determined from the boundary conditions

of the problem and K is the bulk modulus.

The boundary conditions of the problem imply continuity of the radial

displacement u and the radial stress CYralong the boundary of the two materials.

Furthermore, they should be finite at r = 0. Finally, on the outer surface the radial

stress Cr is assumed to be zero.

For a temperature change AT, the constants A], Bj (j = 1,2 refer to the inner

and outer cylinder, respectively) and the axial strain ez are determined from the

following matrix equation:

RI -Rl _R] I 0

K1 - K2 ( 1 - 2v_ KzR 2 K1v 1 - K2V2

0 K2 -( 1- 2v_ K2R52 K'2v2

._ 2 2 KI(I vI)R2+K2(I-v2)(R [ R202VlKIR 2 -v2K2(R2-R21) 0 - -

m i

AI

A2

B2

E
Z

KI( 1 ÷ Vl) oq - K.,( 1 + v:} 0_2

( 1 + v:_ c_', K',

KI(I+vl) _IR_+K2(I+v_ _2(R 2-Rl2)
m

AT

(7.12)

i

>

r
<,

C

i

?
>
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with B1 = 0. R1 and R2 denote the radii of the inner and outer cylinders,

respectively.

After determination of Aj, Bj and _z, the stresses and radial displacement in the

two materials are calculated by equations (7.11).

The elasticity solution of the problem is used in conjunction with the von Mises

yield criterion for the determination of the critical temperature at which the most

stressed elements of the matrix along the fiber-matrix interface enter into the plastic

domain of deformation. This temperature is determined from equation

(Yeff -- (lmy (7.13)

where (_eff is given by

(Yeff = _-2 [((Yz - (_r)2 + ((Yr- (Y0) 2 + ((_0- (Yz)2] 1/2 (7.14)

The stress (Ymy, the proportional limit of aluminum, is a function of temperature.

When the temperature is increased beyond a critical value, plastic zones in

the form of concentric cylindrical layers starting from the fiber-matrix interface are

developed in the aluminum cylinder. The deformation in the aluminum becomes

inhomogeneous and an elastic-plastic analysis is required for the determination of

the stress components and the extent of the elastic-plastic boundary.

The deformation theory of plasticity is used in conjunction with the von-

Mises yield criterion and the isotropic hardening rule for the solution of the elastic-

plastic problem. The fundamental assumption made is that the effective stress-

strain curve (_eff = f (dEeff) for an element in a triaxial state of stress coincides with

the stress-strain curve in uniaxial tension. The effective strain is defined as

dEef f -. 1 [(dEz -dEr) 2 +(dEr _ dE0) 2 + (dE0_ dEz) 2] 1/2
_-(1 +Vm)

(7.15)
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where the value of Poisson's ratio v m is determined from equation (7.10).

The stress-strain relations take the form

d¢z = 1 [doz - v(dGr + d_0) ]

der = 1 [dcrr - v(dG 0 + d_z)] (7.16)

dE0 = 1 [dG0 _ v(dGz + dGr)]

where dEz, der and de 0 are the total, elastic plus plastic, strain increments and dOz,

dGr and dG 0 are the stress increments. E t is the tangent modulus of the uniaxial

stress-strain curve of the material in tension after the proportional limit. In the

elastic region Et is equal to the modulus of elasticity. For a work-hardening

material beyond the proportional limit, Et decreases gradually as plastic deformation

advances.

Equations (7.16) along with the equations of equilibrium and compatibility

are used for the solution of the elastic-plastic problem. It is thus evident that the

deformation theory of plasticity is actually a nonlinear elasticity theory with

changing values of modulus of elasticity and Poisson's ratio depending on the

amount of plastic deformation. This observation led to the following solution of

the elastic-plastic problem of the composite cylinder: The aluminum ring was

divided into N concentric layers with each layer having different elastic modulus

and Poisson's ratio. An elasticity analysis of an N+I material composite cylinder

was then performed following an analogous procedure as in the case of the two-

material cylinder. This solution served as a subroutine to a computer program

written for the elastoplastic solution of the problem [63]. Having determined the

critical temperature at which the first layer at the fiber-matrix interface yields, the

temperature is increased in small steps. For each step,• the tangent modulus and

Poisson's ratio of each layer are determined from the value of the equivalent strain

i
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in conjunction with the uniaxial stress-strain curve of the material in tension. For

each layer, stresses and strains are determined at a representative point at the middle

of its thickness. An iterative analysis was performed for each temperature step until

convergence was achieved. For each temperature, the values of tangent modulus

and Poisson's ratio for each layer were updated according to the value of the

equivalent strain. In this way the complete history of stress and strain along the

radius of the composite cylinder was determined as the temperature was increased

incrementally. The flow chart for the computational procedure used is shown in

Fig. 7.2.

7.4 Results and Discussion (ROM and CCM)

The analyses made use of the constituent properties described in Section 3.

The post yield stress-strain curve of aluminum was represented by a

polynomial of the form

5

t_= Z CnEn

n=O

where the coefficients Cn are temperature-dependent. They were determined at

various temperatures and then a least squares regression analysis was performed to

obtain the functions Cn- Cn(T).

Both the ROM and CCM micromechanical models discussed before were

used. For the two-material composite cylinder model, the outer radius R: was

taken equal to 1.51 R 1 which corresponds to a fiber volume ratio of 0.44. For the

elastoplastic analysis the matrix cylinder was divided into eight layers each of

thickness equal to 0.064 R1. The critical temperature at which the aluminum matrix

starts to deform plastically was first determined by the two micromechanical

models. It was found that (AT)or = 74°C and 66°C (1650F and 150°F) for the ROM

and CCM models, respectively.
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Fig. 7.2 Flow Chart of the Composite Cylinder Thermal Loading Program.
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In the CCM an incremental stress-strain analysis based on the deformation

theory of plasticity as described previously was performed. The temperature was

increased in steps of 13.89°C (25 ° F) and the complete three-dimensional stress

distribution at the midpoint of the thickness of each layer of the aluminum ring was

determined.

Predictions of the longitudinal and transverse thermal strain of the

composite by the ROM and the CCM are shown in Fig. 7.3 by circles and

asterisks, respectively, together with the experimental results. The variation of the

two CTE's otl and o_2 with temperature as it was determined experimentally and

predicted by the two models is shown in Fig. 7.4. From Figs.7.3 and 7.4 it is

observed that the theoretical predictions are in good agreement with the

experimental results for both the longitudinal and transverse strains. Furthermore, it

can be seen that the predictions based on the CCM are closer to experimental results

than those of the ROM. This result is attributed to the fact that, in the CCM, the

complete three-dimensional stress distribution is considered, while in the ROM, the

effect of transverse stresses is omitted and only the longitudinal stresses are

accounted for.

Figure 7.5 shows the variation of the axial, _z, radial, err, and

circumferential, _0, stresses along half the radius of the CCM for AT = 79°C

(175°F). All three stress components are constant in the fiber, while they vary

along the thickness of the ring. The axial stress is tensile in the fiber and

compressive in the matrix with increasing magnitude from the fiber/matrix interface

to the outer radius of the composite cylinder. The radial stress is tensile in both the

fiber and matrix, while the circumferential stress is tensile in the fiber and

compressive in the matrix. In the fiber it is equal to the radial stress, while in the

matrix it takes its maximum value at the fiber/matrix interface. Note that high

transverse stresses of the same order of magnitude as the axial stress are developed
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in the matrix and the fiber. These stresses are ignored in the ROM model. The

variation of the Or, % and _z stresses along the thickness of the aluminum matrix

for various temperatures is shown in Figs. 7.6 to 7.8. In Fig. 7.8 the variation of

Crz stress is shown in a piecewise form, as it was determined in the eight layers of

the matrix along which it is constant. Observe from Figs. 7.6 to 7.8 that all

stresses increase with temperature but with a decreasing rate. The variation with

temperature of the stress components _z in the fiber and the matrix (_zf and Czm)

according to the CCM and the ROM models and the stress (Yrf'- CY0f in the fiber

according to the CCM is shown in Fig. 7.9. Note that the stresses approach a

plateau as the temperature approaches 370°C (700°F). The axial stress predicted by

the two models differs by approximately 15 percent at high temperatures. Finally,

Fig. 7.10 shows the variation of the effective strain eeff along the thickness of the

matrix for different temperatures. This strain decreases from the fiber/matrix

interface toward the outer radius of the composite cylinder and increases with

temperature.

The main results of the present investigation may be summarized as

follows:

1. Above a critical temperature of 66°C (150°F) the longitudinal and

transverse thermal strains become nonlinear resulting in decreasing longitudinal and

increasing transverse CTE's with temperature.

2. The beginning of nonlinearity of the strain-temperature curves coincides

with the development of plastic deformation in the aluminum matrix.

3. Elastic-plastic micromechanical analyses based on the rule of mixtures

and the composite cylinder model were developed. In the analysis the changing

material properties of the aluminum matrix, including the stress-strain curve and the

CTE, were taken into consideration.

4. The complete three-dimensional stress distribution in both the fiber and
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the matrix v_as determined from the micromechanical analysis.

5. High triaxial stresses above the critical temperature resulting in plastic

deformation of the matrix were developed. Plastic stresses are higher at the

fiber/matrix interface and decrease away from it.

6. The transverse radial and circumferential stresses in the fiber and the

matrix predicted by the CCM are of the same order of magnitude as the axial

stresses and should not be ignored. These stresses are responsible for the

development of excessive plastic yielding in the matrix. The ROM model does not

take into account the transverse stresses.

7. The axial and transverse stresses developed in the fiber and matrix

increase with temperature and approach limiting values.

8. Theoretical predictions by both models and the experimental results for

the longitudinal CTE were in satisfactory agreement. However, for the transverse

CTE the predictions of the CCM are much closer to the experimental values than

those of the ROM model. Deviations between the predictions of the ROM model

and experimental results are large at higher temperatures.

7.5 Thermo-elastoplastic Analysis Model [56]

A thermo-elastoplastic analytical model was developed for prediction of the

three-dimensional state of residual stress in the SiC/AI composite. The full

development and description of the analytical model is included in Appendix A.

The analysis was based on the coaxial cylinder model with perfect interracial

bonding. It was assumed that the fiber is linear elastic and temperature-independent

and the matrix is elastoplastic following the power law strain hardening model.

The residual stress-free temperature was assumed to be 288 ° C (550 ° F), i.e., 0.6

of the absolute melting temperature of aluminum, because above this temperature

stress relaxation relieves the residual stress buildup.
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Figure 7.11 shows the distribution of thermal residual stresses in the fiber

and matrix at various temperatures. All residual stress components in the fiber are

constant with radial distance and compressive. In the matrix, the radial stress is

compressive whereas the circumferential and axial stresses are tensile. Matrix

plastic flow reduces the residual stress buildup significantly. Figure 7.12 shows

the variation with temperature of the longitudinal and transverse thermal strains

compared with experimental measurements.
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8. THERMOMECHANICAL ANALYSIS OF SiC/A/ COMPOSITE

8.1 Introduction

Metal matrix composites reinforced with continuous elastic fibers may

experience a pronounced degree of inelastic deformation when subjected to

thermomechanical loading. This inelastic behavior is indicative of the overall

nonlinear stress-strain or strain-temperature response of the composite. The state of

stress in the matrix is no longer homogeneous and it depends on the history of

deformation and the strain rate. A number of different micromechanical approaches

which give not only the overall behavior of the composite but also the detailed

stress state in the constituent materials have been proposed.

Shaffer [64, 65] developed a simple strength of materials analysis to predict

the longitudinal and transverse stress-strain curves of a unidirectional composite

containing elastic fibers in a nonlinear matrix material. Hill [66] studied the average

moduli of fiber composites in which the matrix exhibits elastoplastic behavior. The

finite element method has been applied extensively to analyze micromechanical

models of fibrous composites exhibiting elastoplastic deformation. Lin et al. [67]

performed an elastic-plastic analysis using finite elements in conjunction with the

Prandtl-Reuss incremental plasticity equation to analyze filamentary composites

subjected to longitudinal loading. Adams [68] studied the response to transverse

loading of a unidirectional composite with nonlinear matrix using a finite element

program. A nonlinear finite element analysis of a composite under shear and

transverse loading based on triangular elements and regularly-spaced inclusion

arrays has been performed by Foye [36]. Finite element studies for the

investigation of the behavior of unidirectional composites with matrix material

exhibiting inelastic behavior have been conducted by Adams and Miller [69]. A

three-dimensional finite element code for the elastoplastic analysis of fiber-

reinforced composite materials and structures has been developed by Bahei-E1-Din
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et al. [70]. This code uses a continuum material model for elastic-plastic analysis

developed by Bahei-EI-Din and Dvorak [71, 72]. A finite element analysis of a

regular hexagonal array model was used by Dvorak et al. [14] for the construction

of initial yield surfaces of boron/aluminum composites subjected to arbitrary

combinations of applied stress and temperature.

A class of micromechanical models for the study of elastoplastic fibrous,

particulate and hybrid composite systems based on a hexagonal array geometry

have been presented by Dvorak and Teply [73]. Upper and lower bounds of the

instantaneous stiffnesses of the composite were obtained. A two-material

composite cylinder model has been proposed by Hill [74], Hashin and Rosen [59]

and Whitney and Riley [60] for micromechanical analysis. The model was used for

the study of the elastoplastic behavior of two- and three-material composite

cylinders by Hecker et al. [61,62]. A mechanics of materials elastoplastic model

for the investigation of the thermomechanical behavior of metal matrix composites

has been proposed by Min and Crossman [16]. The matrix was considered as an

elastic-perfectly plastic material. A continuum model for the prediction of the

overall behavior of filamentary composites with elastoplastic constituents has been

proposed by Aboudi [75,76]. The model is based on the assumption that the

continuous fibers are arranged in a doubly periodic array and employs the unified

theory of Bodner and Partom for the description of the inelastic behavior of the

matrix. Explicit constitutive relations between the average stresses and elastic and

inelastic strains were given. This model was also used by Pindera et al [77,78] for

the prediction of the elastoplastic response of boron/aluminum and

graphite/aluminum composites under combined loading. A review of several

elastoplastic models for fibrous composites was given by Bahei-E1-Din and Dvorak

[79]. Sun and co-workers [80,81] presented an orthotropic plasticity model to

describe the elastoplastic behavior of metal matrix composites. The model is
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derived from a plastic potential function of the stress components which has a

quadratic form. Gdoutos et al. [82] used an elastoplastic analysis of the composite

cylinder model (CCM) described before to determine the mechanical behavior of the

SiC/A/ composite at different temperatures. Chun et al. [83,84] conducted two

different thermoelastoplastic analyses, one based on an approximation scheme with

the Prandtl-Reuss plastic flow model and the von Mises criterion and the other

based on an average field theory.

8.2 Composite Cylinder Model [82]

The description and assumptions of the CCM were given before (Section

7.3). The application of this model to the study of mechanical behavior of the

SiC/A/ composite is described in detail in Appendix B. An elastoplastic

micromechanical analysis of the model was performed in which the fiber was

assumed to be linear elastic and the matrix elastoplastic with work hardening. The

analysis was based on the deformation theory of plasticity in conjunction with the

von Mises yield criterion.

Figures 8.1 and 8.2 show how the predicted longitudinal stress-strain

curves at 24 ° C (75 ° F) and 288 ° C (550 ° F) are in good agreement with the

experimental ones. The analysis also yielded the complete three-dimensional stress

distributions in the composite. Typical stress distributions in the fiber and matrix

for a given applied strain of ez = 0.175% at room temperature are shown in Fig.

8.3. Similar stress distributions were calculated for various levels of applied strain

up to ez = 0.833%. It is seen that in addition to longitudinal stresses transverse

stresses in both the fiber and matrix were developed as a result of the difference in

Poisson's ratios of the two materials. The transverse stresses, although much

smaller than the longitudinal stresses, contributed to the plastic deformation of the

matrix.
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The main results of the CCM analysis may be summarized as follows:

1. Slight nonlinearity in the stress-strain behavior of SiC/A/ appears

beyond a critical value of applied stram. This is attributed to the fact that most of

the applied load is taken by the fibers due to their much higher elastic modulus.

The deviation from linearity is more pronounced at higher temperatures.

2. The beginning of nonlinearity in the stress-strain curves coincides

with the development of plastic deformation in the aluminum matrix.

3. The transverse stresses developed due to the difference in Poisson's

ratios of the fiber and matrix are small for linear elastic behavior, but they increase

as plastic deformation is advanced. However, the transverse stresses are an order

of magnitude smaller than the axial stresses. These stresses are ignored in the

micromechanical analysis based on the rule of mixtures.

4. The radial stresses in the matrix are compressive, while the

circumferential stresses are tensile. This results in an increase of the equivalent

stress and the accelerated plastic distortion of the matrix when compared with the

case when the transverse stresses are ignored.

5. Very good agreement between the experimental results and the

predictions of the composite cylinder model was achieved.

8.3 Thermo-elastoplastic Analysis Model - Successive
Approximation Scheme [83]

A thermo-elastoplastic analytical model was developed for prediction of the

three-dimensional state of stress in the fiber and matrix of the SiC/AI composite

under longitudinal tensile loading. The full development and application of the

model is included in Appendix C. The same approach described in Section 7.5 was

followed.

Stress distributions in the fiber and matrix were obtained for various levels

of applied stress and at various temperatures. Figure 8.4 shows such stress
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distributions for various levels of applied longitudinal stress from Ga = 275 MPa to

(Ya "- 1654.8 MPa. The radial and circumferential stresses are approximately an

order of magnitude lower than the axial stress. The stresses in the matrix show

large variations while the stresses in the fiber are uniform.

Figure 8.5 shows how the predicted stress-strain curves under longitudinal

loading at 24 ° C (75 ° F) and 288 ° C (550 ° F) agree well with the experimental ones.

The successive approximation method was found to be a useful tool in

solving problems where the boundary conditions are not explicitly prescribed. The

best advantage of this approach is that the strain and stress fields are computed for

any given load without incrementing the load. However, the method should be

refined by considering additional effects such as residual stresses and creep,

particularly for studying the composite behavior in the transverse direction.

8.4 Thermo-elastoplastic Analysis - Average Field Theory MOdel
[84]

The thermo-elastoplastic behavior of a unidirectional SiC/A/ composite was

studied with a micromechanical model based on the average field theory proposed

by Mori and Tanaka [85]. The full development and application of the model is

included in Appendix D.

The effective strain response of the composite under thermomnechanical

loading was obtained by an average field theory. The fiber is assumed to be elastic

and temperature independent and the matrix is assumed to be a thermoelastoplastic

material that is fitted into a series of power law strain hardening models. The

thermoelastoplastic analysis was carried out by introducing the concept of secant

properties to the average field theory.

Under transverse tensile loading the secant properties of the matrix and the

average stresses in the matrix and fiber at room temperature were obtained as a

function of applied stress. It is noticed that the larger portion of the load is
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transferred to the fibers due to their high stiffness. Figure 8.6 shows predicted and

experimental stress-strain curves under transverse tensile loading at three different

temperatures. At room temperature the agreement between predicted and

experimental results is good. At higher temperatures the agreement is generally

good, but some deviations occur in the transition regions between elastic and fully

plastic behavior. This can be attributed to inelastic deformation other than plastic

flow (creep), higher heterogeneous local deformation of matrix and degradation of

interfacial properties with temperature.

The predicted stress-strain curves under longitudinal tensile loading at

different temperatures are also compared with the experimental ones (Figs. 8.7 -

8.9). Favorable agreement is observed at all three temperatures, because, under

longitudinal loading, the behavior of the composite is dominated by the fibers and

any complex behavior of the matrix has a small influence.

The model was found to be a useful tool for predicting thermomechanical

behavior of unidirectional metal matrix composites. However, the model should be

improved by considering additional inelastic effects such as creep, particularly for

transverse loading above the homologous temperature of the matrix.
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9. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

Experimental methods were developed, adapted and applied to the

characterization of a metal matrix composite system and its constituents. The

material investigated was unidirectional silicon carbide/aluminum (SCS-2/6061 AI ).

The silicon carbide fiber (SCS-2) was characterized by determining its

modulus, strength and coefficient of thermal expansion. A new method was

developed for the latter determination. The aluminum matrix was characterized in

two forms, the T4 and the fully annealed conditions. Stress-strain curves were

obtained at several temperatures between 24 ° C (75 ° F) and 399 o C (750 ° F) and at

two strain rates, 0.02% and 115% per second. Thermal expansion behavior was

measured up to 482 ° C (900 ° F). Creep behavior was also measured at three

different temperatures.

The unidirectional composite obtained in the form of 8-ply 1.422 mm (0.56

in.) thick plates was characterized physically and thermomechanically at three

temperatures 24 ° C (75 ° F), 288 ° C (550 ° F) and 399 ° C (750 ° F). Stress-strain

curves to failure were obtained under longitudinal, transverse and in-plane shear

loading at the three temperatures above. The longitudinal tensile strength decreases

moderately with temperature whereas the transverse tensile and in-plane shear

strengths decrease sharply with increasing temperature. The longitudinal and in-

plane shear moduli do not change with temperature whereas the transverse modulus

shows a gradual reduction. Creep rates increase sharply near and above 288 ° C

(550 ° F) under isothermal conditions. Thermal cycling increases creep rates much

above the corresponding rates under isothermal conditions at the upper limit of the

thermal cycling.

The applicability of a proposed set of multifactor thermoviscoplastic

nonlinear constitutive relationships (TVP-NCR) and a computer code (METCAN)

was investigated. A procedure was developed for determining the unknown

• •f•
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exponents in the TVP-NCR equations by fitting them to experimental data. In the

present work only the temperature and stress dependence of the mechanical and

thermal properties of the composite and its constituent matrix were considered.

Predictions of the thermomechanical behavior of the composite and aluminum

matrix by the TVP-NCR was generally good for most properties. A modification

of the TVP-NCR was proposed in the present work to accommodate for material

properties whose variation with a variable does not comply with the end conditions

dictated by the TVP-NCR. Theoretical predictions from the modified TVP-NCR

were found to be in good agreement with the experimental results. Deviations,

however, between experimental and predicted results appeared in cases where the

form of the experimental curve deviates from the generic form of the TVP-NCR.

The computer code (METCAN) developed at NASA Lewis Research Center

[18] to perform nonlinear analysis of fiber reinforced composites was used for the

prediction of the thermomechanical behavior of the SiC/A/ composite under

investigation. Introducing the previously determined values of the exponents for

the aluminum matrix into METCAN, the longitudinal and transverse stress-strain

curves of the unidirectional composite were predicted at two temperatures. The

experimental results were found to be in good agreement with the theoretical

predictions from METCAN. Furthermore, the METCAN code was used to predict

the magnitude of the residual stresses and strains generated in the composite and its

constituent materials during cool-down from the fabrication temperature. These

residual stresses were high enough to cause strain hardening of the matrix during

cool-down. The composite residual strains as predicted by METCAN and the two-

material composite cylinder were found to be in very good agreement.

Thermal deformations and stresses were studied in the

silicon-carbide/aluminum filamentary composite at temperatures up to 370 ° C (700 °

F). An elastoplastic micromechanical analysis based on a one-dimensional rule-of-
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mixtures model and a two material composite cylinder model was performed. It

was established that beyond a critical temperature of 66 ° C (150 ° F) thermal strains

become nonlinear with decreasing longitudinal and increasing transverse thermal

expansion coefficients. This behavior was attributed to the plastic stresses in the

aluminum matrix above the critical temperature. An elastoplastic analysis of both

micromechanical models was performed to determine the stress distributions in both

the fiber and matrix of the composite. A thermo-elastoplastic analysis was also

conducted based on a successive approximation scheme with a Prandtl-Reuss

plastic flow model. Theoretical predictions by all models and the experimental

results for the coefficients of thermal expansion were in satisfactory agreement.

The behavior of the unidirectional SiC/AI composite under

thermomechanical loading was also analyzed by three different approaches, the

composite cylinder model, the thermo-elastoplastic analysis with the successive

approximation scheme, and a similar analysis based on the average field theory.

The first two models gave results for the longitudinal stress-strain behavior of the

composite which were in good agreement with experiment plus the

three-dimensional state of stress in the matrix and fiber. However, these two

models are not applicable to the case of transverse loading. The third model, based

on the average field theory did not yield detailed stress distributions in the matrix

and fiber, however, predicted stress-strain behavior under longitudinal and

transverse loading at different temperatures. The agreement with experimental

results was very good for the case of longitudinal loading and reasonable for the

case of transverse loading.

The following recommendations are made for future work.

(1) Investigate other MMC systems, especially those with better potential for

high-temperature applications. Attention should be directed towards

developing MMC systems that are more easily processable, more readily
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(2)

available in various forms and less expensive.

Investigate further time and temperature effects by conducting creep tests at

_: <_i/¸

'1

(3)

(4)

(5)

different temperatures and at different stress amplitudes.

Perform thermomechanical cyclic testing of the selected MMC systems and

investigate failure mechanisms.

Investigate the accelerated creep phenomenon under thermal cycling and

develop analysis for its description and prediction. The subject of

nonisothermal creep in general is very important and deserves deeper

investigation.

Extend characterization and analyses to crossply and multi-directional

laminates.

(6)

(7)

(8)

(9)

Investigate the effects of flexural, torsional and combined loading on the

behavior of MMC's.

Investigate dynamic effects, such as high-rate properties, impact response

and wave propagation characteristics.

Develop nondestructive evaluation methods for detection

characterization of flaws and damage in MMC's resulting from a variety of

loading conditions.

Evaluate METCAN for different materials, loading and environmental

conditions. There is evidence that much better agreement between

experimental results and METCAN can be obtained if the proper in-situ

matrix properties are used. In the case of aluminum, properties in the fully

annealed state would give a much better agreement with experiments. This

should be verified.

and
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Abstract

Residual stresses introduced by the cooling process were investigated. The large

mismatch of the coefficients of thermal expansion (CTE) between the SCS-2 fiber and

6061 aluminum matrix tends to produce high residual stresses so that plastic flow of the

matrix is inevitable during cool down.

The elastoplastic behavior of a metal matrix composite material was studied. The

analysis is based on the successive approximation scheme with the Prandtl-Reuss plastic

flow model and yon Mises criterion. The three-dimensional state of residual stress was

computed. It was found from the study that the plastic flow of the matrix relieves the

residual stresses in both fiber and matrix. In addition, the longitudinal stress-strain curve

at room temperature under uniaxial tension and the thermal strain-temperature relationship

of the composite were predicted and compared with experimental results.

Introduction

Application of metal matrix composites (MlVIC's) are in demand for the use of

many structural components in intermediate to high temperature ranges. The MMC's

have higher fracture toughness and ductility than ceramic matrix composites (CMC's)

among the high temperature materials. The MMC's have additional advantages including

high strength, elastic modulus, toughness, impact resistance, resistivity to temperature

change or thermal shock and surface durability, low sensitivity to surface flaws, and high

electrical and thermal conductivity.
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When a MlvlC is cooled down from the high fabrication temperature to room

temperature, high residual stresses may develop due to the mismatch of the coefficients of

thermal expansion between fiber and matrix. The residual stresses are also dependent on

the fiber and matrix properties and the matrix plasticity behavior which are all functions of

temperature. It is reasonable that the matrix may experience plastic flow since the relief of

residual stresses m the composite at room temperature is not possible other than through

plastic flow. This may cause initial yielding of the matrix prior to any application of

loading. Thus, it is desirable to study the composite behavior by considering the plastic

flow and residual stresses.

Residual stresses were investigated by many authors. For example, Haener and

Ashbaugh (1967), Uemura etal. (1979) and Arsenault and Taya (1987) studied the case

of elastic constituents, while Hill (1964), Piggott (1966), Hecker et al. (1970), Gayda and

Ebert (1979) and Vedula et al. (1988) considered plastic flow in determining residual

stresses.

According to Vedula et al. (1988) the matrix experiences three stages during cool

down. Stage I is at high temperature where the stress relaxation is dominant. Residual

stresses in the matrix are negligibly small in this stage. The temperature range or the

lower bound of this stage dependents on the cooling rate. For slow cooling, aluminum

remains in stage I for temperatures down to 200°C (392°F). Stage 1I occurs at an

intermediate temperature where the stress relaxation is no longer s_gnificant and elastic

stresses build up in the constituents. Stage III is at the lower temperature where plastic

flow of matrix begins. In this paper, the lower bound temperature of stage II used is
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288°C (550_'F) that is 0.6 of absolute melting temperature and slightly above the

homologous tern perature.

In this study, a continuous fiber composite is modeled by two concentric cylinders

representing the elastic fiber and elastoplastic mamx respectively. The effects of residual

stresses and plastic flow on thermomechanical behavior were studied by applying a

successive approximation method since the exact solution is not available. The buildup of

triaxial stresses in the cooling process is observed. A more realistic prediction of

thermomechanical behavior is obtained by considering plastic deformation of the matrix

along with residual stresses.

Theoretical Bacl{g,'ou,d

The representative vohnne element used in the analysis is a coaxial cylindrical

model (CCM). It has been used in micrornechanical studies of the axisymmetry problems

by Ishikawa el al. (1978), Iesan (1980), Mikata and Taya (1985), Warwick and Clyne,

(1991) and Hsueh and Becher (1988). The model was used for the study of elastoplastic

analysis tinder thermomechanical loading by the successive approximation method by

Chun el al. (1994). The same analysis was used in this paper to study the residual stresses

and their effects. Figure 1 illustrates the continuous fiber model of MMC used in the

analysis.

The following assumptions were made during derivation of the model. The

constituent materials are isotropic and the bonding between fiber and rnatrix is perfect.

Fibers are linearly elastic up to failure and the matrix is elastoplastic. There is no
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temperature gradient in tile material and the axial plane remains always plane The fiber

volume fraction is reasonably low

For an axisymmetric problem, the force equilibrium equation in the radial direction

and the compatibility conditions give

do- r o r - 0 o+ -- o (1)
dr r

dE 0 E 0 -- E r_-- - 0 (2)
dr r

Furthermore, the elastoplastic stress-strain relationships are formulated by considering

additional plastic strains (a f, Cop, c_), ie,

O" r

E

(1-2 v)(v+ 1)
[(1 - v)(g r - _: ) + v(c o -goP)+ v(G-g:)-(v+I)aAT] (3.a)

E
[(1- v)(a" o - a'ov)-_ v(_'_-_'?)+ v(g=-a'_)-(v+l)aAT] (3.b)

or° (1 - 2 v)( v + 1)

E
[(1- v)(a':

cr (1 - 2 v)( v + 1)
- c.,v) + v(_', - a'f)+ v(_" o -c_) -( v + 1)aAT] (3c)

where E is the elastic modulus, v Poisson's ratio and a the coefficient of thermal

expansion From eqs (1), (2) and (3), the following differential equation is obtained

d20% 3de o (1-2v) dg_ (l-2v)(e_-go p) (v+l) d(akT)
- -- I + -- (4)

drz r dr (1 - v)r dr (1- v)r'- (1- v)r dr

For the case of uniform temperature distribution, this differential equation is solved in the

for 1-13

go - (__- _-)_-.._,(1- 2v_ irg:,dr 27i(1- 2v)__ -4)dr +2(i-2 .1(1- 2v) (el -r g_)dr

't

"[ _ ('f

2r:

(Sa)
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the radial strain is obtained from eqs. (2) and (5.a) as

oc'.

- -2v)
(I 2v).v (1-2v)fr_.Vdr 2111 v) r2+

(1-2v) (aP-e_)dr+ C, +C"
+_-(1----_ f r 2r" -

(5.b)

and the displacement

(1-2v)r (e, p-a'_
(1-2V) fre d r (I- 2v) ft'(g; )dr r

(' _-C.r
2r

(6)

is obtained from the strain-displacement relationship. Note that the solutions have the

same form to those of the elastic case if the plastic strains become zero.

Elastic and Elastoplastc Solutions

Elastic and elastoplastic solutions are obtained from the previously derived

e[astoplastic relations. The elastic solution is used for the fiber while the elastoplastic

solution is applied to the matrix. The prescribed boundary conditions for the elastoplastic

problems are not given in explicit form so that it is difficult to obtain the exact solutions.

However, approximate solutions were found numerically by introducing the successive

approximation scheme, that was used to solve various similar problems by many

investigators; Mendelson and Spero (1962), Davis (1963), and Tuba (1965).

There are altogether six unknowns: two constants C_I and C2s in the elastic

. P and g_ fin the elastoplasticsolution, two constants Cim, C_,, and the plastic strains _,
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solution. These unknowns are determined by satis_ing the following

conditions:

I. The axial strains in the fiber and matrix are equal and constant:

,_':j = _'_,, = e. (7)

where subscriptsJandm denotefiberand matrix,respectively

2. There exits no singularity in the displacement field at the center of the cylinder,

i e. "

six boundary

(_.,j. : 0 (8)

3. Displacements are continuous at the boundary between fiber and matrix:

<,.(a) : _,,,_(a) (9)

4. Radial stresses are continuous at the boundary between fiber and matrix:

cr,.y(a) = cU,,(a ) (10)

5. The radial stress vanishes at i" = b:

cr_,,(b) = 0 (11)

6. Force equilibrium m the fiber direction yields

_ cr::.,.dr + l cr,,,rdr cr°b'-:- 2 (12)
0 a

where o-U is the applied stress.

Nonlinear stress-strain behavior of the matrix is expressed by the power-law strain

hardening formula for the theoretical prediction as an input for constituent properties.

Figure 2 shows the model, in which the stress-strain curve of a station ts expressed as:

o- = o-r +kE,, p (13)
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where k, and H, are material constants, and cry. the elastic limit stress or the yield stress.

If the station is unloaded before yielding, the unloading path traces the loading

path. On the other hand, if the station is unloaded after yielding, the path follows the line

parallel to that of the elastic region as shown in Fig. 2.

reversal yielding, the reversal stresses are purely elastic.

During unloading, if there is no

But if reversal yielding occurs,

stresses in tension and compression be the same.

neglected in this paper.

The step-by-step procedure of tim successive

following:

then the successive approximation method is used to calculate reversal elastoplastic

stresses. The Bauschinger effect may be considered since it is not required that yield

However, the Bauschinger effect is

approximation scheme is the

1. Assign number of equidistant stations (N) along the radial direction from the

center of the cylinder as illustrated in Fig. 1.

2. Assume that g v and c_ are zero at every station, as a first approximation.

3. Determine four unknowns ( ,_j, C,o,, ("2,,, and e'. fr.orn the boundary conditions.

4. Compute strains for fiber and matrix and obtain the corresponding stresses.

5. Calculate effective stresses in the matrix (_-,,) at each station from

_T S,jS_
__ ..)

o-,.= (14)

where S,j is the deviatoric stress tensor of the matrix.

6. For all stations at which the effective stress exceeds the elastic limit, calculate

the effective total strain in the matrix from
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_, = -ejej (15)

where e is the deviatoric strain tensor of the matrix.
q

7. The effective plastic strain -_ is calculated from the stress-strain curves and

the following relationships:

_p = _ 2(1 + v,,, )Trc,;, _,,, (16)
3E,,

8. Obtain the next approximate plastic strains from the plastic flow rule expressed

in terms of strains:

_-P

<

Use these computed plastic strains in the second approximation for the

yielded stations and zero for the remaining stations•

9. Repeat from step 3 until the strains at all stations converge.

(17)

Experimental Procedure

To implement the predictive model above, it is necessary to know the

thermomechanical properties of the constitt, ent materials and the fiber volume ratio of the

composite. The fiber (SCS-2) has an average diameter of 140 /an (0.00551 in.) and its

•measured elastic modulus is 400 GPa. (58 Msi). The fiber behaves elasticly up to failure

and is assumed isotropic and temperature independent. The thermal expansion of the fiber

shows significant nonlinearity in the range between room temperatt, re and 449°C (840°F),

but it is linear up to 1299°C (2370°F), as discussed by Hillmer (1989). The CTE of SCS-
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2 measured by Tsai and Daniel (1994) was used in this study. The stress-strain curves of

A1 6061-O (annealed state) are obtained for various temperatures. The thermal expansion

of the matrix was also measured The experimental results show that the matrix behaves

thermoelastoplastically. The measured constituent properties are shown in Table 1.

The material investigated is an eight-ply unidirectional silicon carbide/aluminum

(SiC/N) composite (SCS-2/6061A1, Textron Specialty Materials). The composite was

fabricated by the diffi.lsion bonding consolidation process.

The as-obtained 1.42mm (0.056in.) thick composite plate was cut into 12.7mm

(0.Sin.) wide 152.4mm (6.0in.) long coupons and tabbed with high strength adhesive for

use at elevated temperatures. Two types of adhesive were used for different temperature

ranges. For the temperature range between 24°C (75°F) and 288°C (550°F), a polyimide

adhesive film (FM36, American Cyanamid) was used; while an aluminum filled

condensation type polyimide adhesive fihn (FM680, American Cyanamid) was used for the

temperature range of 288°C (550°F) to 399°C (750°F). Both types are supported by a

glass cloth carrier for better shear and peel-off strengths. These adhesives provide

sufficiently high strength for testing if the bonded tabs are sufficiently long (38 Imm,

1.5in.).

, High temperature tests were conducted in a thermal chamber. For strain

measurement, the specimens were instrumented with commercially available strain gages

for high temperature applications (WK-gages from Micro Measurements and RKO-gages

from J. P. Technology). The strain readings from the gages were compensated for

temperature by using a dummy gage technique and were verified by measuring the axial

": >; • • i_. :i:c•":,', ; "<• ,i :¸

..:<_'i ¸:• _ _i :.
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strain with a water-cooled clip-on extensometer. The specimen surface temperature was

monitored by a K-type thermocouple bonded on the sur*ace with ceramic adhesive. The

temperature signal was also used as a feedback to the temperature controller.

The thermal strains of the composite were measured with strain gages.

Unidirectional specimens were instrumented with WK-00 (Micro Measurements) gages

for measuring longitudinal and transverse thermal strains. At least three thermocouples

were attached to the specimen to monitor temperature. A programmable hot press (MTP-

14, Tetahedron) was used for controlling temperature change step by step. The specimens

-a,, increments of 14"C (25°F) with halfwere heated up to 260°C (500°F) with the _ =es at

hour dwell intervals to stabilize the temperature and expansivity of the specimen. A strain

gage bridge conditioner (BC-8SSG, KAYE Instruments) and data logger (Digistrip,

KAYE) were used to record time, temperature and strain.

The obtained apparent stratus were corrected to obtain true thermal strains.

Similar ,,a,,e,_ were attached to a titanium silicate reference specimen that has a known

stable coefficient of thermal expansion of 0.0306x10 -6 / ° C (0.017x10 -6/o F). The

reference specirnen was included in the test together with the test specimens The true

was obtained by correcting the apparent strain g_ by the reference strainsthermal strain g,

as follows

a', = _',, - (_',. - _',,, )

where g is the measured ,,a,,e output from the reference specimen and c,r

thermal expansion of titanium silicate.

(18)

is the known
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Results and Discussion

The equivalent ratio of outer to inner cylinder radius is determined by measuring

the fiber volume ratio of the composite by photomicrographic examination. The measured

fiber volume ratio was 0.44 so that the equivalent ratio of outer to inner cylinder radius is

1.51.

The stress-strain curves of 6061-O aluminum at different temperatures are fitted

into a power law strain hardening model from eq. (13). The temperature dependent

parameters, k, n, and cry are tabulated in Table 2. As seen from Fig. 3, the mechanical

properties of 6061-O aluminum decrease with increasing temperature. Above 288°C

(550°F), the yield stress, ultimate strength and the effect of strain-hardening of the matrix

decrease significantly so that the stress-strain behavior becomes close to that of an elastic

perfectly-plastic solid.

The theoretical model described here was applied to study the residual stress

buildup in SiC/A1 composites In the analysis, 26 stations were assigned along the radial

direction in the composite cylinder model as seen in Fig. 1. The residual stress-free

temperature is assumed to be 288°C (550°F), that is 0.6 of absolute melting temperature

of aluminum. Above this temperature stress relaxation plays a large role and only low

residual stresses are expected to be built up. The assumption of this residual stress-free

temperature is not considered a very significant factor once the matrix has yielded under

cooling. Further increase in differential thermal strains is taken up by plastic flow in the

matrix with small increase in residual stresses. The important factor that is likely to affect

residual stresses is the yield stress of the matrix when the residual stresses are generated
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during cool down. The residual stress buildup in the composite and the behavior under

mechanical and thermal loading were also studied. The calculation of residual stresses in

the composite due to cool down from the residual stress-free temperature was carried out

with the etastoplastic formulation and a successive approximation method.

Figures 4 and 5 show the residual stresses of the composite as a function of the

radial distance normalized by the fiber radius without and with consideration of plastic

flow of the matrix. Note that all components of residual stresses in the fiber are

compressive and constant. The radial and tangential stresses in the fiber are equal. The

residual radial stress is compressive and the tangential and axial stresses are tensile in the

matrix. By comparing Figs. 4 and 5, one can Observe that the plastic flow in the matrix

greatly influences the residual stresses in both matrix and tiber. The stresses computed by

considering the plastic flow in the matrix are an order of magnitude less than the ones

without consideration of plastic flow. It is also noted that the residual stresses in the axial

and tangential direction decrease relatively more toward the interface than the outer

cylinder of matrix when plastic flow is considered.

Figure 6 shows the residual stress components at different temperatures. Residual

stresses increase in absolute terms with cooling. Figure 7 shows the computed stresses in

the fiber and matrix at the interface plotted as a function of temperature. The stresses at

the interface increase linearly in absolute terms in the initial stage of cooling. However,

the rate of increase slowed down below a certain temperature when the matrix yields. The

residual stresses may further increase due to the increase of yield stress and strata
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hardening rate of the matrix with decreasing temperature. The plastic flow of the matrix

starts at the interface and moves outward in the matrix cylinder.

The axial and transverse strains of tile composite were computed under axial

loading without or with consideration of residual stresses. The stress-strain curves show

the change of slope due to matrix yielding but the change is relatively small. The

predicted stress-strain curves were not sensitive to residual stresses because the behavior

of the composite under longitudinal loading is dominated by the fiber properties so that

yielding of matrix does not contribute much. The predicted stress-strain curves of the

composite for both cases at room temperature show favorable agreement with

experimental measurements as shown Fig. 8.

Figure 9 shows the longitudinal and transverse thermal strains as a function of

temperature. It shows that the residual stresses tend to delay yielding of the matrix. The

predicted results show a better agreement with experimental results when the residual

stresses are considered in the analysis. The thermal strain curves show nonlinear behavior.

Near room temperature, both fiber and matrix expand linearly as the temperature

increases. At the critical temperature of initial yielding the fiber properties influence more

the longitudinal strains than tile mamx properties

strains are more influenced by the matrix properties.

On the other hand, the transverse

This is shown in the figure where tile

slope of the transverse strain versus temperature curve increases while that of tile

longitudinal strain decreases in tile temperature range above the yield point. These

predictions are m good agreement with experimental results.
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Summary and Conclusions

The state of residual stresses induced in the composite by the cool down from the

fabrication temperature were calculated. Tile large difference in CTE's between the fiber

and matrix causes high residual stresses but the matrix may experience plastic flow

reducing the residual stresses in the composite. An attempt was made to predict the

residual stresses in the cornposite by considering the plastic flow of the matrix.

A therrnoelastoplastic analysis was developed and applied to the prediction of the

residual stresses in a metal matrix composite The model was based on the coaxial

cylindrical model with the perfect bonding at the fiber-matrix interface It was assurned

that the fiber is elastic and the matrix is elastoplastic following the power law strain

hardening model.

The residual stress-free temperature was assurned to be 0.6 of the absolute melting

temperature, because above this temperature the stress relaxation relieves the residual

stress buildup. Below this residual stress-flee temperature the elastic residual stress

buildu'p starts followed shortly thereafter by plastic flow of the matrix. The triaxial state

of residual stress was then computed. Residual stresses in all directions in the fiber are

constant and compressive. The radial residual stress is compressive while the tangential

and axial residual stresses are tensile in the matrix. It is observed that the plastic flow of

the matrix reduces significantly the amount of residual stress buildup

The stress-strain behavior under axial loading is not affected by tim presence of

residual stresses while the thermal strain-temperature curves show a better agreement with

the experimental results when the effect of residual stresses is considered. The stress-
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strain curves and thermal strain-temperature curves of the composite from the elastoplastic

analysis are in good agreement with experimental results

Aclmowledgmellt

This work was supported by NASA-Lewis Research Center, Cleveland, OH. We

are grateful to Dr. C. C Chamis of NASA for his encouragement and cooperation.

A-16



References

Alloy Digest Al-3, 1952, Engineering Alloys Digest, Inc., Upper Montclare, New

Jersey

Alloy Digest AI-205, 1973, Engineering Alloys Digest, Inc., Upper bdontclare,

New Jersey

Alsenault, R. J. and Taya, lVl., 1987, "Thermal Residual Stress in Metal Matrix

Composite," ActaMelallurgica, Vol. 35, No. 3, pp. 651-659.

ASTM D3379-75, American Society for Testing and Materials, Philadelphia.,

U.S.A.

Chun, H. J., Wooh, S. C, and Daniel, I. M., 1994, "Thermoelastoplastic Behavior

of Unidirectional Composite Materials: Succesive Approximation Method," ASME

Journal of Applied Mechanics, To be submitted.

Davis, E. A., 1963, "Extension of Iteration Method for Determining Strain

Distributions to the Unifonnly Stressed Plate with a Hole," ASME Journal of Applied

_Iechanics, June, pp 210-214.

Gayda, J. and Ebert, L. J., 1979, "The Effect of Cryogenic Cooling on the Tensile

Properties of Metal-Matrix Composites ," Metallurgical Transactions A, Vol. 10. A, Mar.,

pp. 349-353.

Haener, J and Ashbaugh, N., 1967, "Three-Dimensional Stress Distribution in a

Unidirectional Composite, Journal oJ('omposite Malerials, Vol. 1, pp. 54-63.

Hecker, S S., Hamilton, C. H., and Ebert, L. J., 1970, "Elastoplastic Analysis of

Residual Stresses and Axial Loading in Composite Cylinders," Journal of Materials,

JMLSA, Vol. 5, No. 4, pp. 868-900.

Hill, R., 1964, "Theory of Mechanical Properties of Fiber Strengthened Materials;

II Inelastic Behavior ," Join'hal of the Mechanics and Physics of Solids, JMPSA, Vol. 12,

pp. 213-218.

Hilhner, N. J., 1989, "Thermal Expansion of Chemically Vapor Deposited Silicone

Carbide Fibers, " Proceeding of the American Society/or (_?omposite, Dayton, OH, pp.

206-213.

Hsueh, C. and Becher, P. F., 1988, "Thermal Expansion Coefficients of

Unidirectional Fiber Reinforced Ceramics," Journal oJ the American Cetztmic 5'ociety,

Vol. 71, pp. 438-441

A-17



Iesan, D.. 1980, "Thermal Stresses in Composite Cylinders," Journal oJ Thetwyal
Siress, Vol. 3, pp. 495-508

Ishikawa, T., Koyama, K. and Kobayash, S., 1978, "Thermal Expansion

Coefficients of Unidirectional Composites, Journal of Composite Materials., Vol. 12, pp.
153-168

Mendelson, A. and Spero, S. W., 1962, "A general Solution for the Elastoplastic

Thermal Stresses in a Strain-Hardening Plate with Arbitrary Material Properties," ASME

Journal of AppliedMechatucs, March, pp. 151 - 158

Mikata, Y. and Taya, M., 1985, "Stress Field in a Coated Continuous Fiber

Composite Subject to Thermo-Mechanical Loadings, Journal of Composite Metterials,
Vol. 19, pp. 554-578.

Piggott, M. R., 1966, "A Theory of Fiber Strengthening," Acta Metalht_L, ica ' Vol.
14, Nov, pp 1429-1436.

Pindera, M.-J. and Lin, M. W., 1989, "Micromechanical Analysis of the

Elastoplastic Response of Metal Matrix Composites," Jottntal of Pressure Vessel
Technology, Vol. 111, pp 183-190.

Tsai, C-L, and Daniel, I. M., 1994, "Method for Thermo-mechanical

Characterization of Single fibers, " Composite Science and Technology, Vol. 50, pp. 7-12

Tuba, S., 1965, "Elastic-Plastic Stress and Strain Concentration Factors at a

Circular Hole in a Uniformly Stressed Infinite Plate," AS_IE Journal of AppBed
k/lechanics, September, pp. 170-171.

Uemura, M., Iyama, H and Yamaguchi, Y., 1979, "Thermal Residual Stresses in

Filament Wound Carbon Fiber-reintbrced Composites," Journal oj Thermal Slresse.r, Vol
2, pp. 393-412.

Vendula, M, Pangborn, R. N., and Queeney, R. A., 1988, "Fiber Anisotropic

Thermal Expansion and Residual Thermal Stress in a Graphite/Aluminum Composite,"
Composite, Vol. 19, No. 1, pp. 55-60.

Warwick, C. M. and Clyne, T. W., 1991, "Develop,-nent of Composite Coaxial

Cylinder Stress Analysis Model and Its Application to SiC Monofilament Systems,"

Journal of Materiul Science, Vol. 26, pp. 3817-3827.

Whitney, J. M., Daniel, I M, and Pipes, R. B., 1985, E.vperimental Mechanics of

Fiber ReinJorced Composiw Materials, SEM Monograph 4, Second Ed., Bethel, CT.

A-18



, ii ¸

Figure Captions

Fig. 1

Fig. 2

Fig. 3

Coaxial cylindrical composite model.

Schematic stress-strain curves of power law strain hardening models..

Tensile stress-strain curves of 6061-O aluminum at various temperatures.

Fig. 4 Thermal residual stresses distribution in the fiber and matrix at room temperature

as a function of normalized radial distance without considering plastic flow in the

matrix.

Fig. 5 Thermal residual stresses distribution in the tiber and matrix at room temperature

as a function of normalized radial distance with considering plastic flow in the

matrix.

Fig. 6 Thermal residual stress distributions in the fiber and matrix as a function of

normalized radius due to cool down from residual stress free temperature.

(a) radial, (b) tangential, (c) axial stresses.

Fig. 7 Radial, tangential and axial residual stresses in the matrix at r-=a and in the fiber as

a fi.mction of tel-nperature.

Fig. 8 Stress-strain curves of unidirectional SiC/AI composite at room temperature.

Fig. 9 Longitudinal and transverse thermals strains versus temperature curves of

unidirectional SiC/A1 composite.

A-19

_ '_i _: • ,, _:i;i I _ • , , _ _ • _



Table 1 Properties of aluminum 6061-O and SCS-2 fiber at room temperature

Property

Elastic modulus, E, GPa (Msi)

Poisson's ratio, v

Yield stress,, MPa (ksi)

Tensile strength,. MPa (ksi)

Coefficient of thermal expansmn,

,,,u_"/"F )

a./ca'/°C

24 (75)

121 (250)

177 (350)

288 (550)

450-1300 (842-2372)

6061-O Ahu-ninum SCS-2 Fiber

690 (10) 399.9 (58)

0.33 0.22

55.2 (8) ---

124.1 (18) 3461 - 5309

(502 - 770)

23.4(13) 2.25(1.25)

23.6(13.1) 2.34(1.30)

23.9(13.3) 2.81(1.56)

24.8(13.5) ---

--- 4.86(2.70)

Table 2 Values of material dependent parameters

Temperature

Modulus Elastic limit Material Material

stress constant constant

E, GPa (Msi) o-v, MPa (ksi) k (xl0 -5 ) 11 (XI0 -2 )

24°C (75"F) 68.6 (10) 41.4 (6)

121"C (250"F) 63.8 (9.25) 39.3 (5.7)

177°C (350°F) 60.7 (8.8) 37.4 (5.35)

288°C (550°F) 55.2 (8) 33.1 (4.8)

399°C (750°F) 48.3 (7) 15.9 (2.3)

510

450

380

6.62

6.12
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Table 3 Properties of SiC/AI cornposite at roorn temperature

Prope_v

Longitudinal modulus, E,, GPa (Msi)

Major Poisson's rano, vl2

Longitudinal tensile strength, F,, MPa (ksi)

Longitudinal coefficient of thermal expansion, %, :lcI °C (/lc/°F)

Transverse coefficient of therrnal expansion, a,, ,llcl"C (/lc/°F

Fiber volume ratio. I,',.

SiC/A1 Composite

206.9 (30.0)

0.27

1620.0 (235.O)

5.94 (3.3)

16.o (8.9)

0.44
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MICROMECHANICAL ANALYSIS OF FILAMENTARY METAL MATRIX COMPOSITES

: r

ABSTRACT

A two-material composite cylinder model (CCM) was considered for the study of the

mechanical behavior at different temperatures of a fiber reinforced silicon carbide/aluminum

(SiC/A/) composite. An elastoplastic analysis of the model was performed in which the fiber was

assumed to be linear elastic and the matrix elastoplastic with work-hardening. The analysis was

based on the deformation theory of plasticity in conjunction with the von-Mises yield criterion.

Experimental stress-strain curves of a SiC/A/ composite were obtained at 24°C (75°F) and 288°C

(550°F). The complete three-dimensional stress distribution in the composite using the CCM was

determined. It was found that in addition to longitudinal stresses, transverse stresses in both the

fiber and the matrix were developed as a result of the different Poisson's ratios of the two

materials. The transverse stresses, although much smaller than the longitudinal stresses,

contributed to the plastic deformation of the matrix. The experimental stress-strain curves were

favorably compared with the theoretical predictions.

KEYWORDS: Metal-Matrix Composites; Micromechanics; Silicon Carbide/Aluminum; Elasto-

plastic Analysis; High-temperature behavior.

INTRODUCTION

Metal matrix composites reinforced with continuous elastic fibers may experience a

pronounced degree of inelastic deformation when subjected to thermomechanical loading. This

inelastic behavior is indicative of the overall nonlinear stress-strain or strain-temperature response

of the composite. The state of stress in the matrix is no longer homogeneous and it depends on the

history of deformation and the strain rate. A number of different micromechanical models which

give not only the overall behavior of the composite but also the detailed stress state in the

constituent materials have been proposed.

These models for the study of linear and nonlinear behavior of fibrous composites in which

the matrix exhibits elastoplastic deformation were based on mechanics of materials analysis [1-3],

13-2
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bounding methods of plasticity [4,5] and finite elements [6-13]. Further studies on modeling the '

i thermomechanical response of metal matrix composites are listed in references [14-20]. A two-

i• _ material composite cylinder model has been proposed in [21-23] for micromechanical analysis.

This model was used in the study of the elastoplastic behavior of two and three-material composite

cylinders in [24,25].

In the present paper an elastoplastic analysis of the composite cylinder model based on the

deformation theory of plasticity in conjunction with the von-Mises yield criterion was performed.

Complete three-dimensional stress distributions in the cylinder were obtained. The model was

successfully used for the prediction of the longitudinal stress-strain behavior of a SiC/A/

composite at two temperatures.

THE COMPOSITE CYLINDER MODEL

The representative volume element in the two-material composite cylinder model (CCM)

consists of an inner cylinder simulating the fiber and a shell included between the inner and outer
I

radii of the cylinder simulating the matrix (Fig. 1). This representation is characteristic of low fiber

volume composites in which the fiber volume ratio is usually taken arbitrarily less than 65 percent.

For high fiber volume composites the inner cylinder simulates the matrix and the shell the fiber.

The composite material used in this study, silicon carbide/aluminum, has a relatively low fiber

volume ratio.

The fiber (SIC) is considered linear elastic up to fracture, while the aluminum matrix

exhibits elastoplastic behavior and its thermomechanical properties are temperature-dependent. The

CCM is fin'st analyzed for the case when both components remain linear elastic and then when the

matrix shell is deformed elastoplastically.

Elastic Behavior

For linear elastic behavior of both materials of the composite cylinder the non-zero

displacement and stress fields for axisymmetric mechanical deformation are given by the following

equations [16]

u = Ar+ B (la)
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r2 (lb)

Co= K[A + (1- 2v)r_-+ v ez]
(lc)

Oz = K [2vA + (1- v) ez] (ld)

In the above equations u is the radial displacement, _, ¢_0 and _z the radial, circumferential

and axial stresses, r the radial distance from the center of the cylinder, ez the axial strain and A and

B constants to be determined from the boundary conditions of the problem. The bulk modulus K

is given by

K= E

(1 +v)(1- 2v) (2)

where E is the modulus of elasticity and v Poisson's ratio.

Since the inner cylinder and the shell are perfectly bonded, continuity of the radial

displacement u and the radial stress CYrat the interface between the two components is implied.

Furthermore, u should be finite at r = 0 and Or is zero at the outer boundary of the cylinder.

For an applied constant strain ez across the composite cylinder cross section the constants

Aj, Bj (j = 1,2) are determined from the solution of the following matrix equation

0K1 -K2 (1-2v2) K2 R_ 2 A2 = -KIV1 + K2v2 ez

0 1 -(1-2V2) R_2 B2 -V 2 (3a)

B1 = 0 (3b)

where the subscripts 1 and 2 refer to the inner (fiber) and outer (matrix) components and R1 and

R2 are the inner and outer radii of the composite cylinder_

After determining the constants A j, Bj (.j = 1,2) the stresses err, G 0 and _z and ,the

[3-4
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displacement u are computed from equations (1). From equation (ld) it is observed that the axial

stresses azl and Oz2 are constant along the axis of the composite cylinder. The average axial stress

on the cylinder is determined by

(_zl R21+ _zz(R_ - R21)
(__-

R_ (4)

The critical strain (ez)er for which the most stressed elements of the matrix along the fiber-

matrix interface start to yield is determined by

(Yeff = _my (5)

where the effective stress _eff is given by

_eff = _[(_z- err)2 + (_r- c0) 2 + (G0- _z)2] 1/2 (6)

Equation (5) expresses the von-Mises criterion for initial yielding. The yield stress _my of

the aluminum is a function of temperature.

Elastoplasfic Behavior

When the applied axial strain Ez is increased beyond its critical value (ez)cr plastic

deformation occurs in the aluminum phase. It takes the form of concentric cylindrical layers

starting from the fiber-matrix interface and spreads progressively towards the outer radius as ez is

increased. The deformation in the aluminum becomes inhomogeneous and an elastic-plastic

analysis is required for the determination of the stress field and the elastic-plastic boundary.

The deformation theory of plasticity in conjunction with the von-Mises yield criterion and

the isotropic hardening rule are employed. The results obtained by this theory coincide with those

of the flow theory for proportional loading, while for non-proportional monotonic loading without

unloading reasonably accurate predictions are obtained. [26] The basic assumption made in the

elastoplastic analysis is that the effective stress-strain relation creff = f(deff) for a triaxial state of

stress coincides with the stress-strain curve in uniaxial tension. The effective strain is defined by
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deft- fZ (11+ v) [(dez - der) 2 + (dec- d_) 2 + (de o - dEz}2] 1/2

The value of Poisson's ratio v beyond the yield point can be determined by

v -- 0.5 - (0.5 - v') Es_
E

(7)

(8)

where E and Es are the elastic and secant moduli of the material in tension and v' the Poisson's

ratio in the elastic region.

The incremental stress-strain relations in the deformation theory of plasticity take the form

dez = 1 [doz - v (dot + do0)]
tzt (9a)

(9b)

(9c)

where dez, der and de o are the total, elastic plus plastic, strain increments and dOz, dOr and do 0 are

the stress increments. Et represents the tangent modulus (E = do/de) of the uniaxial stress-strain

curve of the material in tension.

Equations (9) are used in conjunction with the equations of equilibrium and compatibility.

The deformation theory of plasticity is actually a nonlinear elasticity theory with changing values of

modfilus of elasticity and Poissori's ratio depending on the amount of plastic deformation. Thus,

for the solution of the elastic-plastic problem the aluminum shell was divided into a number (N) of

concentric layers, each layer having a different modulus and Poisson's ratio. The following

procedure was followed:

1. An elasticity solution of the (N+I) material composite cylinder was obtained following a

procedure analogous to that used in the previous ease of the two-material composite
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cylinder. This solution served as a subroutine to a computer program written for the

elastoplastic solution of the problem.

2. The applied critical strain (Ez)er for which the first layer at the fiber-matrix interface yields

was determined, using the stress solution obtained by the subroutine in conjunction with

equation (5).

3. A strain increment AE above the critical strain (Ez)cr was applied. The effective total

(cumulative) strain is given by EnN = EN-1 + den, where N denotes the number of the loading

step, and n the iteration number, den is the first effective swain increment.

4. The tangent modulus was determined for each layer from the value of the equivalent strain

obtained from the uniaxiai stress-strain curve of the material and Poisson's ratio v from

equation (8).

5. Stress and swain increments d(_ij and deij (using equations (9)) were determined for all

cylinders with the new values of modulus and Poisson's ratio, as determined in step 4.

6. The new effective strain increment den+l was determined from equation (7).

7. Strain increments den+l and den were compared. If (den+l-den)/den > _ for all cylinders (_5

is a predetermined cutoff value), the program returned to step 3 with the value den+l

substituting the value den. The entire process from step 3 to step 6 was repeated. If

(den+l-den)/den < _ for all cylinders, then, the correct states of stress and strain for the load

increment used are given by those obtained with the values of den. The program was then

returned to step 3 and the entire procedure was repeated.

Using this procedure the complete history of stress and strain along the radius of the

composite cylinder was determined as the strain was increased incrementally.

EXPERIMENTAL RESULTS

The composite material consisted of a 6061-T6 aluminum matrix reinforced with 140 l.tm

(5.6 x 10-3 in.) diameter silicon carbide fibers (SCS-2, Textron Specialty Material, Inc.). The
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fiber volume ratio was measuredas0.44. Thematerial was producedby a diffusion bonding

consolidation,during which the temperof the aluminum is changedto one approachingT-4

temper. For this reason6061-T4aluminumwasobtainedandtestedto determineits mechanical

andthermalresponse.

Thecompositematerialwasobtainedin theform of unidirectional8-ply plates,0.178mm

(7 x 10-3in.) thick. Specimens15.2cm (6 in.) long and 1.27cm (0.5 in.) wide with the long

dimensionparallelto thefibersweremachinedwith a water-cooleddiamondsaw. Aluminumtabs

werebondedto thespecimenendswith ahigh strengthadhesive.The tablengthwaslongenough

(5.1 cm. (2 in.)) to provide an areawhich is largeenoughto transfer the load to the specimen

through shear. Great care was exercisedin cutting the specimensso that the fibers do not

experienceanysignificantdamageandthetabswerepreciselyalignedon thespecimens.

Tensiletestswerecarriedout in a servo-hydraulicInstrontestingmachine.Thespecimens

wereloadedat acrossheadrateof 0.06in/min, up to failure. Particularcarewastakenin aligning

thecouponsin the grips. Testsat ambientand elevatedtemperatureswereperformed. Special

grips were usedfor testing at elevatedtemperatures.A water-cooling systemwas installed to

lower thegrip temperature.Specialhigh-temperaturestraingages(Micromeasurementsgagetype

WK-06-125 TM-350) were usedto record the strainsalong the axial (el) and transverse (E2)

directions. Axial strains were also monitored with an extensometer of 1 in. gage length (0.1 in.

range). The application of the extensometer as a second means of measuring strain was considered

essential because the strain obtained from the gage output could then be double-checked. A data

acquisition system (Metrabyte Corp.) was used to acquire, process and plot data in reportable

form.

Figures 2 and 3 show longitudinal stress-strain curves for the SiC/A/ composite at 24 °C

(75°F) and 288 °C (550°F). Both curves exhibit a linear elastic portion that extends up to strains e

= 0.12 percent and 0.07 percent, for temperatures 24°C and 288°C, respectively. Note that the

stress-strain curves up to failure deviate little from linearity which is attributed to the fact that most

of the applied load is carried by the fibers due to their much higher elastic modulus. The deviation
I
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from linearity is morepronouncedat 288°C. The stressvs. transversestraincurvefor 24°Cand

288°C(Figures2and3) arealmostlinear up to fracture.

For the micromechanical prediction of the stress-strain behavior of the composite the stress-

strain curves of the aluminum matrix at 24°C and 288°C are needed. Prismatic 6061-T4 aluminum

specimens of dimensions 20.32 cm (8.0 in.) long, 1.27 cm (0.5 in.) wide and 0.16 cm (0.062 in.)

thick were prepared. For testing at elevated temperatures steel tabs were bonded onto the specimen

ends with a high strength adhesive (FM-36). The stress-strain curves of 6061-T4 aluminum at

various temperatures ranging from 24°C to 288°C are shown in Fig. 4. Only the portion of the

curves up to 1 percent strain is shown. As temperature increases the stress at which the curves

deviate from linearity decreases. Values of the proportional limit of aluminum at 24°C and 288°C

are shown in Table 1. The modulus of elasticity for all stress-strain curves at various temperatures

is the same and equal to 69 GPa (10 Msi). In the nonlinear portion of the curves the stresses

corresponding to the same strain decrease with increasing temperature.

THEORETICAL PREDICTIONS

Prediction of the stress-strain behavior of the composite by the composite cylinder model

necessitates the values of the various material parameters entering into the previously described

micromechanical equations. The fiber (SIC) remains almost linear elastic up to fracture. Its

mechanical parameters are independent of temperature and they are given in Table 2. Unlike the

fiber, aluminum exhibits pronounced plastic deformation and its thermomechanical parameters are

temperature dependent. The post yield stress-strain curve of aluminum was represented by a fifth-

order'polynomial of the form

5

O= _ Cnl_ n
n=l

The coefficients Cn are temperature dependent. They were determined from the stress-

strain curves of aluminum in uniaxial tension at different temperatures. Values of Cn for

temperatures of 24°C and 288°C (75 ° and 550°F) are given in Table 1.

I
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For afiber volumeratio of the SiC/A/ composite studied in this investigation (0.44) the

outer radius R2 of the composite cylinder model (CCM) is equal to 1.51 R1, where R I is the inner

radius. In order to perform an elastoplastic analysis of the composite cylinder the matrix shell was

divided into eight layers each of thickness 0.064 RI. The critical value of the applied average

uniaxial strain (_)_ for which the aluminum matrix starts to deform plastically was first determined

from equation (5). It was found to be (Ez)_r = 0.125 percent for T = 24°C and (ez)cr = 0.060

percent for T = 288°C. These strains ru'c very close to t_he critical ones at which aluminum deviates

from linearity. For applied strains ez below these values the stress-strain curve of the composite is

linear and the triaxial stress field developed in the fiber and matrix is directly proportional to ez.

The stresses in the fiber are

Crzf= 364.3 ez GPa (52.8 ez Msi)

off = o0f = - 2.7 ez GPa (-0.386 ez Msi)

and the stresses in the matrix at r = R1 are

om = 70.4 ez GPa (10.2 Cz Msi)

¢_rm= - 2.7 ez GPa (- 0.386 ez Msi)

C0m = 6.8 e z GPa (0.989 ez Msi)

Note that the transverse stresses are an order of magnitude lower than the axial stresses. It is also

worthwhile to observe that the axial stresses in the fiber and the matrix are very close to those

predicted bythe rule of mixtures which yields the values Ozf = 359 GPa (52 ez Msi) and _zm = 69

GPa (10 ez Msi), respectively. For linear elastic behavior the longitudinal elastic modulus and

major Poisson's ratio take the values of 199.8 GPa (28.96 Msi) and 0.276 which are very close to

the values of 199.6 GPa (28.92 Msi) and 0.282 predicted by the rule of mixtures. The

experimental values for the elastic modulus and Poisson's ratio are 176 GPa (25.5 Msi) and 0.29,

respectively.

When the applied strain ez is increased beyond its critical value (ez)er, plastic deformation

takes place in the aluminum matrix. An incremental elastoplasfic stress/strain analysis as described
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before was performed. The strain ez was increased at intervals of 0.05 percent and the three-

dimensional stress distributions at the midsurface of each layer of the aluminum shell was

determined. The predicted longitudinal stress-strain curves of the composite at temperatures of

24°C and 288°C are shown in Figs. 2 and 3, respectively. They agree well with the experimental

results.

According to the elastoplastic analysis of the composite cylinder based on the deformation

theory of plasticity, each layer of the aluminum shell is considered as an elastic material with

varying modulus of elasticity, Era, and Poisson's ratio, Vm, depending on the amount of plastic

deformation. The variation of Era and Vm across the thickness of the aluminum shell (1.00 < r/R l

< 1.51) is shown in Figs. 5 and 6 for various values of the applied strain ez at T = 288 °C (550°F).

Observe that Em decreases from its elastic value of 69 GPa (10 Msi) while v m increases from its

elastic value of 0.33 up to the limiting value of 0.50 as ez increases. The variation of both Em and

Vm along the radius of the shell is small with E m increasing and Vm decreasing from the fiber/matrix

interface to the outer radius of the composite cylinder. The variation of Em and Vm at the

midsurface of the aluminum shell with the applied strain ez is shown in Fig. 7 for T = 24 °C.

Figure 8 shows the variation of the axial, oz, radial, Or, and circumferential, (r0, stresses

along half the diameter of the composite cylinder for ez = 0.175 percent and T -- 24°C. All three

stress components are constant in the fiber, while the stresses vary along the thickness of the shell.

A slight variation of the axial stress Oz with increasing values from the fiber/matrix interface to the

outer radius of the composite cylinder is observed. Note that the radial stress is compressive in

both the fiber and matrix, while the circumferential stress is compressive in the fiber and tensile in

the matrix. Both radial and circumferential stresses have equal values in the fiber, while a large

variation of these stresses is observed in the matrix. The transverse stresses are ignored in the

micromechanical analysis of the composite based on the rule of mixtures. The variation of the

stresses tJr, oo and _z along the thickness of the aluminum matrix for various values of the applied

strain ez is shown in Figs. 9 to 11 for T = 24°C (75°F). In Fig. 11 the variation of stress Oz is

shown in a stepwise form, as it was determined at the midsurface of each of the eight layers of the
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matrix. Note from Figs. 9 to 11 that all stresses increase with applied strain Ez and that the rate of

increase decreases as the strain is increased.

CONCLUSIONS

A study of the stress-strain behavior of a SiC/A/ filamentary composite was performed.

Experimental longitudinal stress-strain curves at temperatures 24°C (75°F) and 288°C (550°F) were

obtained. An elastoplastic micromechanical analysis based on the composite cylinder model was

performed and yielded complete three-dimensional stress distributions in both the fiber and the

matrix. The main results of the present study may be summarized as follows:

1. Slight nonlinearity in the stress-strain behavior of SiC/A/ appears beyond a critical

value of applied strain. This is attributed to the fact that most of the applied load is taken by the

fiber due to their much higher elastic modulus. The deviation from linearity is more pronounced at

higher temperatures.

2. The beginning of nonlinearity in the stress-strain curves coincides with the

development of plastic deformation in the aluminum matrix.

3. The transverse stresses developed due to the difference in Poisson's ratios of the

fiber and matrix are small for linear elastic behavior, but they increase as plastic cleformation is

advanced. However, the transverse stresses are an order of magnitude smaller than the axial

stresses. These stresses are ignored in the micromechanical analysis based on the rule of mixtures.

4. The radial stresses in the matrix are compressive, while the circumferential stresses

are tensile. This results in an increase of the equivalent stress and the accelerated plastic distortion

of the matrix when compared with the case when the transverse stresses are ignored.
i

5. Very good agreement between the experimental results and the predictions of the

composite cylinder model was achieved.
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Table 1. Values of the quantities (Jmy and Cj (j=0,1,2,3,4,5) of aluminum A1 6061-T4 at T=24 oC (75 °F) and 288 oC (550 °F)

I

T

oc OF

24

288

ffmy

MPa Ksi

75 86.2 12.5

550 41.4 6.0

CO

MPa Ksi

-44.8 -6.5

13.1 -1.9

C1

10 -2 MPa

1490.3

835.9

10 -2 Ksi

216.1

121.2

C2

10-4 MPa

-4479.3

-1621.4

10 -4 Ksi

-649.5

-235.1

C3

10-6MPa 10 -6 Ksi

6932.4 1005.2

1359.3 197.1

C4

10 -8 MPa

-5318.6

-306.9

10 -8 Ksi

-771.2

-44.5

C5

10 -]0 MPa

1601.4

-91.7

10-10 Ksi

232.2

-13.3



,<.

Table 2. Mechanical properties of silicon carbide SCS-2 fiber at room temperature

Material

SCS-2

GPa

365

E

Msi

53

V

0.22

l_Pa

3195

_u

Ksi

463
I

%
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FIGURE CAPTIONS

Fig. 1 Composite Cylinder Model.

Fig. 2 Longitudinal Tensile Stress-Strain Curves of SiC/A/ Composite at T = 24°C (75°17)
Obtained Experimentally and Predicted by the Composite Cylinder Model (el and ¢2 are

longitudinal and transverse strains in composite, respectively).

Fig. 3 Longitudinal Tensile Stress-Strain Curves of SiC/A/ Composite at T = 288°C (550°F)
Obtained Experimentally and Predicted by the Composite Cylinder Model (El and e2 are
longitudinal and transverse swains in composite, respectively).

Fig. 4 Tensile Stress-Strain Curves of 6061-T4 Aluminum Up to 1 Percent Strain at Different
Temperatures.

Fig. 5 Variation of Tangent Modulus Along the Thickness of the Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain V-zat T = 288°C (550°F).

Fig. 6 Variation of Poisson's Ratio Along the Thickness of the Aluminum Matrix Shell in the
CCM for Different Values of the Applied Swain ez at T = 288°C (550°F).

Fig. 7 Variation of Tangent Modulus and Poisson's Ratio at the Midsurface of the Aluminum
Matrix Shell of the Composite Cylinder Versus the Applied Strain v-,zat T = 24°C (75°F).

Fig. 8 Variation of Axial (Crz), Radial (at) and Circumferential (G 0) Stresses Along Half the
Fiber/Matrix Cross Section for an Applied Swain V-z= 0.175 percent and T = 24 ° (75°F).

Fig. 9 Variation of the Radial Stress _ Along the Thickness of Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain e.z at T = 24°C (75°F).

Fig. 10 Variation of the Circumferential Stress a0m Along the Thickness of the Aluminum Matrix
Shell in the CCM for Different Values of the Applied Strain ez at T = 24°C (75°F).

Fig. 11 Variation of the Axial Stress azm Along the Thickness of the Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain ez at T = 24°C (75°F).
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AL 606 I-T4 Matrix

Fig. 1 Composite Cylinder Model.
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Abstract

The elastoplasticbehaviorof a metal matrix composite material was analyze d

based on a successive approximation scheme with the Prandtl-Reuss plastic flow model

and von Mises criterion. Results obtained were applied to a unidirectional silicon

carbide/aluminum composite. The three-dimensional state of internal stress was computed

for mechanical and thermal loading conditions. In addition, the stress-strain curves under

uniaxial tension at different temperatures and the thermal strain-temperature relation of the

composite were predicted and compared with experimental results. The method is

particularly useful in the case when the boundary conditions are not explicitly prescribed

and it has the advantage that the strains and stresses are computed for any given loading

conditions without step-incrementing the load.

1 Introduction

Composite materials are ever finding many structural applications because of their

superior performance to conventional metal counterparts. Due to the simple and cost-

effective fabrication process, polymer based composites are most widely used. However,

these materials, in general, are not adequate for the use in structures operating at an

elevated temperature. On the other hand, ceramic matrix composites (CMC) and metal

matrix composites (MMC) are more suitable for such applications. The maximum

operating temperature range of the CMC's are generally much higher than that of the

MMC's, but the CMC's fail in a brittle fashion so that these materials usually have lower

fracture toughness. By contrast, the MMC's are used over intermediate temperature
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ranges and have advantages such as high strength, high stiffness, high toughness, high

impact resistance, high resistivity to temperature change or thermal shock, high surface

durability, low sensitivity to surface flaws, and high electrical and thermal conductivity

Unidirectional composites subjected to thermomechanical loading have been

investigated by many authors, for example, Ishikawa et al. (1978), Unemura et al (1979),

Iesan (1980), lVlikata and Taya (1985), and Warwick and Clyne (1991), by considering a

coaxial cylinder model These models assume elastic consutuents, particularly on elastic

matrix In the case of MIVIC, the matrix undergoes plastic flow and is sensitive to the

environmental temperature. Thus, it is desirable to study the composite behavior taking

into consideration the elastoplastic properties.

In the case of longitudinal tension, the composite behavior is dominated by the

properties of the fiber. In addition to the axial stresses, transverse stresses are also

developed. These radial and tangential stresses, although small in magnitude, contribute

to the plastic deformation of the matrix and should not be overlooked.

Dimensional stability over a broad temperature range is one of the important

factors that should be taken into consideration. Due to the coefficient of tt_ermal

expansion (CTE) mismatch between fiber and matrix,

when the material experiences a temperature change

thermal stresses are introduced

Also, when the composite is

consolidated from the fabrication temperature, thermal residual stresses develop When

such stresses are sufficiently high, the matrix yields and affects the composite behavior.

Thus, the study of the thermal behavior is an important aspect in understanding composite

behavior. Hsueh and Becher (1988) made an attempt to predict the coefficient of thermal

ii i !i
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expansionof a ceramiccompositeusingthe coaxialcylindermodel. Their result agrees

well with other predictionssuchas thoseby Schapery(1968), Takao and Taya (1985,

1987),Rosen(1970),andHoffinan(1973).

elastoplasticmatrixin tile model.

A continuous fiber composite was modeled

representingthe elasticfiber and elastoplasticmatrix.

in thisstudy,tilemethodwasextendedfor an

by two concentric cylinders

Tile proposedmodel not only

predictsthe overall behaviorof the compositebut also gives detailedstressand strain

distributionsin theconstituentmaterialsunderthermomechanicalloading.

2 Materials

The material investigated was an eight-ply unidirectional silicon carbide/aluminum

(SiC/N) composite. The specimens were obtained from the manufacturer (Textron

Specialty Materials) in composite plate form and characterized by standard tensile tests

(See Whitney et aL (1985)). Tables 1 and 2 show the measured elastic properties of the

composite and the constituents, respectively.

Continuous SiC filament (SCS-2) was produced by chemical vapor deposition

(CVD) around a carbon ,nonofilament core, according to tile manufacturer. The

measured average diameter of tile fiber is 140 /,An (0.00551 in.). To the authors'

knowledge, there is no available method for direct measurement of the in-situ matrix

properties. The properties of 6061-0 aluminum (annealed state) were used in the analysis

for various reasons including agreement with experimental results as will be discussed

later.

C-4
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, The composite was fabricated by the manufacturer by a diffusion bonding

consolidation process. The producibiliiy of SiC reinforced metals is attributed to the SiC

fiber characteristics, because the SiC fibers are well bonded to metals and are resistant to

strength degradation during the elevated temperature process. Such characteristics of the

SiC fiber and the light weight of aluminum made the SiC/AI composite a widely used

material.

3 Theoretical Background

Figure 1 illustrates the continuous fiber model of the MMC used in the analysis.

The inner cylinder (fiber) of radius a is surrounded by the outer cylinder (matrix) of outer

radius b. The following assumptions were made in the development of the model:

1. The constituent materials are isotropic.

2. Bonding between fiber and matrix is perfect.

3. The fiber is linearly elastic up to failure and the matrix is elastoplastic.

4. There is no temperature gradient in the material. In other words, the

temperature distribution is uniform for the entire material.

5. Residual stresses are ignored.

6. The fiber volume ratio is reasonably tow.

For an axisymmetric problem, the displacements in the radial, tangential, and axial

directions are respectively assumed to be of the form:

C-5
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u = ,,(I.)

Uv = 0

u = w(z)

and tile linear elastic strain-displacement relations are:

59l
Grr =

59"

(1)

(2.a)

l!

_ 00 "= --

r

6Z

(2.b)

(2.c)

8rz = _Oz = _'re = 0

The equilibrium conditions are expressed as

do-,. CY -- 0" v+---0
dl" r

and the compatibility conditions yield the following relationship:

dgo go - _
"1- -0

d]" r

(2.d)

(3.a)

(3.b)

(3.c)

(4)

C-6

i%

E



3 o,1 Elastic Solution

The thermoelastic stress-strain relations are thus obtained as

O" r

E

(1 - 2 v)( v + 1)
[(1 - v)g r + v(c o + e: ) - ( v t 1)aAT]

E
[(1 - v)e o + v(_ r + _=) -( v + 1)aAT] (5)

ere = (1 - 2 v)( v + 1)

E .

o-, = (1-2v)(v+l)[(1- v)c= + v(g r + So )-( v + I)aAT]

where E is the elastic modulus, v Poisson's ratio and oc the coefficient of thermal

expansion. From eqs. (2) through (5), the following differential equations are obtained.

d2u 1 du u (l+v) d(aAT)

dr 2 + r 2 -r dr (1- v) dr
(6.a)

d2w
= 0 (6.b)

dz 2

For the case of uniform temperature distribution, eq. (6.a) becomes homogeneous because

d( c_r) _ 0 (7.)
dr

Thus the following general solutions are obtained:

u = A1 + 4r (8.a)
r

w = D I + D,z (8.b)

and the strain field is obtained from the strain-displacement relations as
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where AI,

conditions.

A_ +A.
Er - 1" 2

A1
go = t-_-+ 4 (9)

e z : D 2

A 2, D,, and D:. are constants which are determined from the boundary

3.2 Elastoplastic Solution

The elastoplastic stress-strain relationships are formulated by considering

additional plastic strains e p ,( r, eP eP)in eqs. (5).

O" r --

E

(1 - 2 v)( v + 1) [(1-v)(e r-ef)+v(e o-e_)+v(e z-ef)-(v+l)a:AT] (10.a)

E

cr° (1 - 2 v)( v + i) [(1-- V)(e 0 --ef)'t- V(e r --e?){- v(e z -ezP)-(v--t--1)aAT] (10.b)

E

o- = (1 - 2 v)( v + 1) [(1 - v)(e z - el) + v(e - e?)+ v(eo-eV)-(v+0aAT] (10.c)

Applying similar procedures as in the elastic analysis, the following differential equation is

obtained

d2ea 3 de o (1-2v) de? (1-2v)(ef-eft) (1+ v) d(czAT)
dr" + -_ = + -- (11)

r dr (1- v)r dr + (1- v)r _ (1- v)r dr

In the case of uniform temperature distribution, the solution for the tangential strain takes

the form
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711, '-:

• ; :_ i̧ /•

"i < i

(1_-2 v) j" rEfdr6" 8 -- v)r 2

C, + C,
21.2 -

(1 -.2 v)
j ;)d,-+

777 =2(1
(l-2v) I (gf -gff).cl r

(12.a)

tile radial strain is obtained from eqs. (4) and (12.a) as

0_' r --

(1 - 2 v)

(1- v)

(1-2v)
ere (_-a)7 Irsredr+

(1-2v) I r(gre_s_)dr
2(1- v)r 2

(1-2v) I (s/-g_)dr+_r_ +C 2+

(12.b)

and the displacement

(1 - 2 v)

-CI + C=r
21"

(1 2 V)

J ,-(sre -sa')dr +
2(1- v)r

(1 - 2 v)r [ (gre - sop )dr
O

2(1- v) r
(13)

is obtained from the strain-displacement relationship. Note that the solutions reduce to

those of the elastic case when tile plastic strains become zero.

4 Boundary Conditions

The previously obtained elastic and elastoplastic solutions are applied to the fiber

and matrix, respectively. There are altogether six unknowns: two constants A, and A 2 in

P and E_ in tilethe elastic solution, two constants C,. C 2 and the plastic strains c r

elastoplastic solution. These unknowns are determined by satisfying the following six

boundary conditions:

1. The axial strains in the fiber and matrix equal and constant:

_'zf = °ezra= a'z = D2 (14)

where subscriptsfand m denote fiber and matrix, respectively.
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2. There exists no singularity in the displacement field at the center of the cylinder,

i.e.,:

z, = o (15)

This leads to a simpler form of the elastic displacement field

ul = A2r (16)

6¢=eg=A 2 (17)

3. Displacements are continuous at the fiber and matrix interface:

u;(a)= um(a ) (18)

and from eqs. (8.a) and (13) it follows that

aA: + C_ _aC:_(1-2vm)Iorefd r (1-2%.)
2--7 -(1-v)a 2--O-"v-_a I; r (e f -eft)dr

(I - 2v_)a fa (e f - e op
4 ?(-i-S_v--_,) °° r )dr

(19)

4. Radial stresses are continuous at the fiber and matrix interface:

(T¢(a) = (Trm(_l) (20)

Substituting eqs. (14) and (17) into eq. (10.a) and eqs. (12) into eq. (10.a),

equation (20) is rewritten in the form

ErA2 EmC l E,.C 2

(1 - 2vl)(v I + 1)

vsE s

+[(1- 2v _)(%.+ 1)

_ (vj + 1)E;aIAT
m

(t-2vj.)(vj, + i)

Em
+(l_2v,.)(v +1)["

2(vm + 1)a 2 (1-2Vm)(Vm+l)

v,nEm

(1-2v)(v m+ 1) ]a'z

(v,_+ l)E a ar

(1-2v,..)(v +1)

(1--2Vm) 2 forefdr+
(1- v.,)a 2

+(1-2vm)
2(1- v.,) fo (*?-e;)drr

C-IO

(21)

(1- 2Vm)2 f],'(ef-ef)ar
2(1 - vm)a 2

F
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5 The radial stress vanishes at i" = b:

arm(b ) = 0 (22)

or

v(1-2 .,)(.,

2b= 1- G + vmG

(1- 2 v.,) 2 j'b= ( v.. + 1)amAT+ -7.- - -- re,dr
b'(1- Vm) 0

(a--2Vm) b(g_ - gOP)dr
2(1 - Vm) J'o r

2

b P
(1-2v..) J'or(G-gff)dr

2b2(1- v..)
(23)

6 Force equilibrium in tile fiber direction yields

_ a_rdr + l a_mrdr crob2
o a 2

(24)

or

viGa24 %G(b 2 -a_)G
+

(1-2vS)(vj +1 ) (1-2v.,)(v.,+l)

(1- vl)E;a 2 (1- vm)Em(b z -a2)] G
+[ 2(1 - 2 v I )( v I + i) + 2(1 - 2 vm)( v,. + 1)

Gob'- E_a:.ATa 2 Ema.,AT(b'- - a")
-- + +

2 2(1-2v,.) 2(1-2 era)

E.. v.,(l-2v=) bjb(gy-_)dr a2[_(¢_-_oP).dr ]
+(l_2v.,)(v.+l) { 2(l-V_m) [ Jo r - -o r

(1--2V.,)(2--Vm) e

where o-o is the applied stress.

(25)
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5' Successive Approximation Method

The prescribed boundary conditions are not expressed in explicit form so that it is

difficult to obtain exact solutions. However, approximate solutions were found

numerically by introducing the successive approximation scheme that was used to solve

various similar problems by many investigators; Mendelson and Spero (1962), Davis

(1963), and Tuba (1965).

Since the matrix behaves in a highly nonlinear fashion, it is often necessary to

express the stress-strain curve in empirical equational form for the theoretical prediction of

composite behavior Figure 2 illustrates two simple forms of broadly used curve fittings:

linear and power law strain hardening models, in which the stress-strain curve is fitted as:

orr + e'p (linear law)PEru
0" I cr +1-,8 ,, (power law) (26)

L Y Kl2_m_° p

where k, n, and/5' are material constants, and crr the elastic limit or the yield stress. It was

found from experience that the power law strain hardening model fits aluminum

reasonably well.

Following is the step-by-step procedure of the method used in computing the

effective plastic strain distribution.

1. Assign number of equidistant stations (N) along tile radial direction from the

center of the cylinder as illustrated in Fig. 1.

p
2. Assume that _'_ and eo are zero at every station, as a first approximation.

3. Determine four unknowns A2, Ci, C 2 and cz from eqs. (19), (21), (23),

and (25). Perform integration numerically by using simple trapezoidal or
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Simpson's rule.

4. Compute strains for fiber and matrix from eqs. (9) and (12), and obtain the

corresponding stresses from eqs. (5) and (10).

5. Calculate equivalent stresses in the matrix (_-,,) at each station from eq.

(A13) in the Appendix.

6. For all stations at which the equivalent stress exceeds the elastic limit, calculate

the equivalent total strain in the matrix from eq. (AI0):

1 )2 +(e0 m_ e_,,)2 +(e_ m _ erm)2 ] (27)
_ = -_ .]2[( er. ' - eom

7. Plot the experimentally obtained stress-strain curve of the matrix and fit it into

an appropriate strain hardening model to it, e.g., the power law model.

Determine the constants k and/l and compute the equivalent plastic strain _

from the relationship:

_p 2(1 + v,)gr.,
eL = -g,. (28)

3E m

8. Obtain the next approximate plastic strains from eq. (A12) as:

--p

= __--=-(2er., - gem - e.,,, )
J g.,

--p

e"''2 °e_ = 71, go. , - er. , - &., ) (29)
._e.,

--p

P <' eo,.)e_ = 7_ (2 ez,,, - e,= -

Use these values as the second approximation for the stations where yielding has

occurred and use zero for the remaining stations.
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, 9. Repeat the steps above until the strains at all stations converge.

6 Experimental Procedure

The experimental characterization of the material in this study consists of (i)

mechanical characterization of the composite at ambient temperature, (2) characterization

of the fiber, (3) thermomechanical characterization of the matrix at various temperatures,

and (4) measuring the stress-strain behavior of the unidirectional composite at

corresponding temperatures. The detailed procedure is described below.

The mechanical characterization procedures are described in Whitney et al. (1985).

These test methods were used for preliminary characterization of the material and the

measured properties are shown in Table 1.

The fiber was characterized by measuring its elastic modulus and tensile strength

following the ASTM D3379-75 standard procedure. A special miniature tensile testing

device was designed and used to provide good control and accuracy of measurements

(See Daniel et al. (1989, 1993), Luo et al. (1994)). After a careful center-line alignment of

a single filament on the special slotted tabs, the specimen was loaded up to failure. During

testing, the load and displacement were continuously monitored from the load cell and the

LVDT, respectively. The filament cross-sectional area was determined from the highly

magnified photomicrographs. The apparent compliance obtained directly from the load-

displacement curve should be corrected to obtain the true compliance by repeating tests

for various gage lengths from 25.4 mm (1.0 in.) to 61.0 mm (2.4 in.) from the slope of the

apparent compliance curve plotted against the gage length.
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Since it is extremely difficult to measure the in-situ properties of the matrix, it was

only possible to measure them from the bulk form material. Selection of the heat

treatment state that correspond to the'condition of the matrix was a problem because the

matrix properties, particularly those of metal matrix composites, are significantly changed

by the temperature history during the manufacturing process. The properties of the as-

fabricated aluminum matrix are similar to those of the near O temper (annealed state) .

characteristics, according to Pindera and Lin (1989). Furthermore, the specimen, during

the curing process of bonding of the tabs at an elevated temperature, experiences a

temperature history similar to that of the annealing process of aluminum It is believed

that property changes due to the repeated heat treatment is negligible. Assuming that the

in-situ properties of the matrix are reasonably close to those of the fully annealed state, the

6061 aluminum, heat treated by the standard annealing procedure (See Alloy Digest), was

characterized at various operating temperatures.

The as-obtained 1.42mm (0.056in.) thick composite plate was cut into 12.7mm

(0.5in.) wide 1524mm (6.0in.) long coupons and tabbed with high strength adhesive for

testing at elevated temperatures. Two types of adhesive were used for different

temperature ranges. For the temperature range between 24°C (75°F) and 288°C

(550°F), a polyimide adhesive fihn (FM36, Punerican Cyanamid) was used; while an

aluminum filled condensation type polyimide adhesive film (FM680) was used for the

temperature range of 288°C (550°F) to 399"C (750°F). Both types are supported by a

glass cloth carrier for better shear and peel-off strengths. These adhesives provide
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sufficiently high strength for testing provided the bonded tabs are sufficiently long

(38. imm(l.5in.)).

The high temperature tests were conducted in a thermal chamber. For strain

measurement, the specimens were instrumented with commercially available strain gages

for high temperature applications (WK-gages from Micro Measurements and RKO-gages

from J. P. Technology). The strain readings from the gages were compensated for

temperature by using a dummy gage technique and were verified by measuring the axial

strain by means of a water-cooled clip-on extensometer. The specimen surface

temperature was monitored with K-type thermocouple bonded on the surface with ceramic

adhesive. To minimize the error due to convection heat loss, the thermocouple was

shielded with Kapton tape. The temperature signal was also used as a feedback to the

temperature controller. Tests were conducted at the temperatures of 24°C (75°F), 121°C

(250°F), 177°C (350°F), 288°C (550°F), and 399°C (7500F).

7 Results and Discussiou

Constituent materials were thermolnechanically characterized and shown in Table

2. Figure 3 shows the measured apparent compliances obtained from the SCS-2 single

fiber testing as a function of gage length. The true compliance of the fiber is determined

from the slope of the curve. In addition, the coefficient of thermal expansion (CTE)

measured by Tsai and Daniel (1994) was used in this study. The stress-strain curves of

6061-0 aluminum obtained at various temperatures are shown in Fig. 4. As the

temperature increases, the elastic limit stress decreases significantly and the stress-strain
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behavior becomes close to that of an elastic perfectly-plastic solid.

by the power law strain hardening model of eq. (26). The

parameters, k, n, and crr from this fit are tabulated in Table 3.

These curves are fitted

temperature dependent

It was shown from the thermal-strain curve that the CTE of 6061 aluminum is

linear up to approximately 93.3°C(200°F) and exhibits slight nonlinearity above that

temperature. On the other hand, the CTE of the fiber shows significant nonlinearity in the

range between room temperature and 449°C (840"F), but it is linear beyond that up to

1299°C (2370°F), as discussed by Hilhner (1989).

The fiber volume ratio measured from photomicrographic examination was 0.44.

The equivalent ratio of the outer to inner cylinder diameters is 1.51 in this case, as

determined from the relationship:

b 1
- (30)

The composite behavior was studied by considering the mechanical and thermal

loading conditions. From the measured constituent properties, the elastoplastic problem

was solved by the successive approximation method with 26 stations assigned along the

radial direction. Under longitudinal tensile loading, the state of stresses in the composite

is triaxial Figures 5(a), 5(b), and 5(c) show respectively the radial, tangential, and axial

stresses in the fiber and matrix as a function of r/a, that is the radial distance normalized

by the fiber radius. As shown in the figures, several different levels of applied stress were

chosen up to failure in increments of 275.8 MPa (40 ksi). It is noted that the radial

stresses are compressive everywhere while the tangential stresses are compressive in the

fiber and tensile in the matrix
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, Substitution ofeqs. (14)and (17) into eq. (5) yields a condition that the stresses in

the fiber, o-_., cy_ and o-v are independent of the radius r in other words, the stresses in

the fiber are uniform. Furthermore, the radial stress component is equal to the tangential

stress component. On the other hand, the radial and tangential stresses in the matrix

decrease in absolute terms gradually from the fiber-matrix boundary as r increases. These

stresses are an order of magnitude smaller than the axial stress but they contribute to the

plastic deformation of the matrix. The condition of very high axial stress in the fiber

compare to the other stresses implies that the a,,dal deformation of the composite is

dominated by the fiber properties.

Because of the plastic deformation of the matrix starting at a certain stress level,

the rate of change in the local stresses decreases with respect to the applied stress above

the critical yield stress. For example, the radial, tangential and axial stresses at r = o are

plotted as a function of applied stress as shown in Fig. 6. The initial portion of the curve is

linear at stresses below yielding and then it approaches a plateau as the applied stress

increases above the yield point. Also shown in the figure are the stresses in the fiber.

Although the fiber properties are purely elastic, the actual stresses in the fiber are

influenced by the matrix and show a pattern similar to that of the matrix. However, the

axial stress in the fiber is high and not sensitive to the matrix deformation.

The effective strains are computed for prediction of the stress-strain curve of the

composite. Figures 7(a), 7(b), and 7(c) show typical stress-strain curves at 24°C (75"F)

and 288"C (550°F), respectively. The axial and transverse strains compare favorably

experimental measurements.
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The case of thermal loading case was also studied in addition to mechanical

loading. The effects of residual stresses in the composite were neglected in this study

although it is important to understand' them for computing the actual stresses at a given

temperature. However, it is interesting to study the thermal behavior by computing

thermal stress distribution due to a temperature change.

Thermal stress components at various temperatures were computed and shown in

Fig. 8. The thermal properties of the matrix at any given temperature can be obtained by

linear interpolation of the measured data. Unlike the mechanical loading counterpart,

these stresses do not change monotonically with the change in temperature. For example,

as shown in Fig.8(a), the stress in the fiber at 177°C (350°F) is higher than that at 65.6°C

(150°F) but lower than the one at 121°C (250°F).

in the fiber and matrix plotted versus temperature.

Figure 9 shows the computed stresses

Note that the stresses increase linearly

in the initial range of the heating process in the neighborhood of room temperature. The

rate of increase slows down above the matrix yielding temperature and then the stresses

decrease at higher temperatures. This phenomenon occurs because the internal stresses

are affected by two competing factors: Thermal expansion keeps increasing as the

temperature rises, while the matrix properties degrade at high temperature. As a result.

the stresses increase at lower temperature where the thermal expansion predominates the

process. On the other hand, the stresses drop at elevated temperatures where the matrix

properties are significantly degraded. This phenomenon should be noted in designing

structures for use at high temperatures.
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Figure 10 shows the longitudinal and transversethermal expansionsof the

compositeasa function of temperature.Nearroom temperature,both.fiber and matrix

expandlinearlywith temperature.At a criticaltemperaturewherematrix yieldingbegins,

thepropertiesof the fiber contributemoreto the longitudinalstrainsthan the matrix. On

theotherhand,the transversestrainsaremoreinfluencedby thematrix properties.This is

shownin the figure wherethe slopeof the transversestrain increaseswhile that of the

longitudinal strain decreasesin the temperaturerange above the yield point. The

experimentalmeasurementsdonot exactlycoincidewith theprediction. It is believedthat

thisslightdeviationis a resultof theneglectof residualstressesandof the relativelyhigh

fibervolumeratioof themodel.

8 Summary and Conclusions

An elastoplastic analysis was developed and applied to the prediction of the

thermomechanical behavior of a metal matrix composite based on the coaxial cylindrical

model with perfect bonding at the fiber-matrix interface. It was assumed that the fiber is

elastic and the matrix elastoplastic following a power law strain hardening model.

Stress distributions in the fiber and matrix due to mechanical and thermal loading

conditions were obtained for various stress levels and temperatures. In the case of

longitudinal tension, the radial and tangential stresses are approximately an order of

magnitude lower than the axial stress. The stresses in the matrix show large variations

while the stresses in the fiber are uniform.
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In the case of thermal loading, the strain-temperature relationship shows

nonlinearity due to matrix yielding and'plastic flow. In the last stage of thermal loading,

the internal stresses decrease because of the coupling of thermal expansion and matrix

softening effects.

The successive approximation method was found to be a useful tool in solving

problems where the boundary conditions are not explicitly prescribed. The best advantage

of this approach is that the strain and stress fields are computed for any given loads

without incrementing the load. However, the method should be refined by considering

additional effects such as residual stresses and creep, particularly for studying the

composite behavior in the transverse direction
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Appendix

Prandtl-Reuss Relations in terms of Plastic Strain and Total Strain

The Prandtl-Reuss equations express the relationship between the plastic strain

increment to the stresses. These relation can be modified using a set of similar equations

expressed in strains. These total deformation plasticity relationships are more convenient

to use in conjunction with the successive approximation scheme. The general

relationships are derived as follows.

The total strain is expressed as a sum of elastic and plastic components

e,l = a*,l+ '_'p (A1)

where a,j is the total strain, d the elastic strain, and d! the plastic strain.0 ,j

Subtracting the mean strain from the diagonal components yields

1 8,, * le'kk_. + P0,,= <, *,j (12)

Defining the total deviatoric strain tensor %, and elastic deviatoric strain tensor e e

equation (A2) becomes

= e ° P (A3)eij ij + Eij

Prandtl-Reuss flow relation gives the relationship

" = AS,j (A4)Ea)

where _. is nonnegative constants and ,5'0 the deviatoric stress tensor expressed as

1

S o. =or o --_ o-a,b',j (A5)
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From the Hook's law and Prandtl-Reuss relationship, the elastic deviatoric tensor is

expressed as

or

e_= 1
,, _-S,, (A6)

1 cP

'J (A7)e e _

2G 2

and from eq. (AS)

By defining an equivalent modified total strain

equation (A9) becomes

[2

7= V-_ Ge,j (AI0)

= 1 + (A1 I)
-gP 2GA

P "_P (A12)

6"iJ = T %

Equivalent stress and an equivalent plastic strain are:

&-= _/_-3o3 _ (AI3)
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From eq. (A8)

where G is the shear modulus.

Substituting eq. (A7) into (A3) gives

= P P (A9)

e,j= I+ g,)P (AS)



.<

II
!

.c.__

i_. _i_!_!;i:'i_i,,I )j__:i;_:ii_i.i,i̧ _)i,, ¸¸¸¸¸¸_i,. i



Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Coaxial cylindrical composite model.

Schematic stress-strain curves of linear and power law strain hardening models.

Apparent compliance of SCS-2 fiber as a function of gage length.

Tensile stress-strain curves of 6061-O aluminum at various temperatures.

Stress distribution in the fiber and matrix as a function of radial distance for

longitudinal mechanical loadin: (a) radial, (b) tangential, (c) axial stresses.

Radial, tangential and axial stresses in the matrix at r=a and radial and

tangential stresses in the fiber as a function of applied stress.

Stress-strain curves of [08 ] unidirectional SiC/A1 composite at various

temperatures. (a) 24°C (75°F) and (b) 288°C (550°F).

Stress distribution in the fiber and matrix as a function of radius for various

temperature changes: (a) radial, (b) tangential, (c) axial stresses.

Radial, tangential and axial stresses in the matrix at r=a in the fiber as a

function of tern perature.

Fig. 10 Longitudinal and transverse thermal strain-temperature curves of unidirectional

SiC/AI composite.

C-27{

,



/

Table 1 Properties of SiC/AI composite at room temperature

Property

Longitudinal modulus, El, GPa (Msi)

Major Poisson's ratio, v12

Longitudinal tensile strength, F,, MPa (ksi)

Longitudinal coefficient of thermal expansion, a_, pc� °C (,uc/°F)

Transverse coefficient of thermal expansion, a 2, tic� °C (,uc/°F)

Fiber volume ratio, Vr

SiC/A1 Composite

206.9 (30.0)

0.27

1620.0 (235.0)

5.94 (3.3)

16.0 (8.9)

0.44

Table 2 Properties of aluminum 6061-O and SCS-2 fiber at room temperature

Property

Elastic modulus, E, GPa (Msi)

Poisson's ratio, v

Yield stress, Cry, MPa (ksi)

Tensile strength, F,, MPa (ksi)

Coefficient of thermal expansion, a, #c/°C

(,us/°F)

24°C (75°F)

121°C (250°F)

177°C (350°F)

288°C (550°F)

450-1300°C (842-2372°F)

6061-O Aluminum SCS-2 Fiber

69.0 (I0) 399.9 (58)

0.33 0.22

55.2 (8) ---

124.1 (18) 3461- 5309

(502- 770)

23.4(13.0) 2.25(1.25)

23.6(13.1) 2.34(1.30)

23.9(13.3) 2.81(1.56)

24.8(13.5) ---

--- 4.86(2.70)
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Table 3 Values of material dependent parameters

Temperature

Modulus Elastic limit Material Material

stress constant constant

E, GPa (Msi) err, MPa (ksi) k (xlO-') n (xlO -2)

24°C (75°F)

121°C (250°F)

177°C (350°F)

288°C (550°F)

399°C (750°F)

68.6 (10) 41.4 (6) 510 45.3

63.8 (9.25) 39 3 (5.7) 450 45.5

60.7 (8.8) 37.4 (5.35) 380 45.6

55.2 (8) 33.1 (4.8) 6.62 45.8

48.3 (7) 15.9 (2.3,) 6.12 46.0
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Abstract

The thermoelastoplastic behavior of unidirectional SiC/Al composite was studied

with a micromechanical model based on the average field theory. The continuous elastic

fibers are assumed consistently scattered in the thermoelastoplastic matrix in the model.

The thermoelastoplastic analysis of the composite is achieved by introducing the concept

of secant properties of the matrix. The average stresses of the matrix, fiber and the

effective strain of the composite are expressed as fi.mctions of the secant modulus of the

matrix. The stress-strain curves under transverse and longitudinal tensile loading at

different temperatures and the thermal strain-temperature curves of the composite were

predicted and compared satisfactorily with experimental results.

Introduction

Metal matrix composites (MMC's) are in demand even though their fabrication

process is more complex and less cost effective than that of polymer based composites

because of their superior performance in operating environments involving high

temperature and moisture. They also posses other merits such as high toughness, impact

resistance, resistivity to temperature change or thermal shock, surface durability, low

sensitivity to surface flaws, and high electrical and thermal conductivity. The

unidirectional colnposite is tile easiest to manufacture and has the best properties in the

fiber direction. However, its transverse strength is lnuch lower than that of unreinforced

matrix. This makes it difficult to use the material in unidirectional form and is important

to understand its behavior especially under transverse loading.
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A micromechanicalmodelwasadoptedto predictthermoelastoplasticbehaviorof

compositematerials.In thepast,mostinvestigationswerefocusedon the elasticbehavior

of the compositeand only a limited numberof studieswascarriedout on elastoplastic

behaviordue to its complicatednature. In the caseof MMC, the matrix undergoesa

plasticflow andis sensitiveto theenvironmentaltemperature. Thus, it is irnperativeto

studythebeI-MC behavior using the thermoelastoplastic solution.

A number of investigations of different micrornechanics were carried out. For a

low fiber volume ratio Eshelby's method (1957) was used successfully to predict average

behavior of the composite. For intermediate fiber volume ratio the coaxial cylinder model

(CCM) was introduced by Ishikawa et al. (1978), Unemura et al. (1979), Iesan (1980),

Mikata and Taya ( t 985), and Warwick and Clyne ( 1991), by assuming elastic constituents,

particularly elastic matrix. The model was extended to include elastoplastic behavior of

the matrix by Hecker el al. (1970), Gayda and Ebert (1979), and Chun el al. (1994). But

the applications of CCM are restricted to the axisyrnmetric problems. To overcome this

restriction, attention.was paid to a model which is based on Eshelby's solution with Mori

and Tanaka's 1.1973) average field theory incorporating Eshelby's equivalence principle.

This model is not only applicable to non axisymmetric loading conditions but also gives

reasonable results for larger fiber volume ratios (See Lin el al, 1992). This method has

been used by Taya and Chou (1981), Taya and Mura (1981), Takao and Taya (1987),

Benveniste(t987), Tandon and Weng (1988), and Lin el al. (1992).

The theory proposed by Tandon and Weng (1988) was extended to the

thermoelastoplastic analysis of a unidirectional composite in this paper. In the analysis,

the therrnoelastoplastic behavior of the composite is described by introducing the concept
I
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of secant moduli to the Mori and Tanaka's method (1973). This method simplifies tile

thermoelastoplastic analysis without recourse to the plastic strain components from tile

plastic flow role. The theoretical predictions were compared with experimental results.

Theoretical background

The representative volume of the composite consists of a number of long fibers in

a matrix block. The fibers and matrix are assumed l_tlly bonded. The model provides the

following constutive relations for tile effective response of a unidirectional elastoplastic

composite referred to a Cartesian coordinate system (x_, x2, x3) ,,vhere x 3 is aligned with

the fiber direction as shown in Fig. 1.

The fiber behaves elasticly up to failure and the matrix behaves

thermoelastoplasticly. The fiber volume ratio is denoted byf The secant moduli of the

matrix and fiber are denoted as C,, and Cj., respectively.

According to Mori and Tanaka (1973), the average disturbed strain field exists

only inside the fiber in the representative volume if the shape of the representative volume

and fiber are taken similar because the average disturbed strain field due to the existence

of the fiber vanishes outside the inhomogenity. This method has an advantage because no

boundary condition is needed to determine overall behavior of the system. External

tractions or external displacements can be assigned to the boundary of the system which

yield the same result. In this paper, the analysis was carried out when tile external traction

is applied to the boundary of the representative volume. This method is based on analysis

of two systems, one is a reference model of a pure matrix under the same external load as

the second system that contains the fibers.
I
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Tile external traction applied to the boundary produces a uniform stress cr0 and

strain _'o if the body does not contain any reinforcement. They are related by

O-o= C'oy0 (1)

where C,, is the secant modulus of the matrix at the applied stress o-o. The average stress-

strain relationship of the matrix in the composite is quite different from equation (1). It is

expressed as

= = C.,(eo + g) (2)

where c7,,, and _" are matrix disturbance stress and disturbance strain, respectively, due to

the presence of reinforcement. The stress-strain relation of the fiber is also different from

that of the surrounding matrix. With the help of Eshetby's equivalent inclusion principle

the stress in the fibers is expressed as follows

Crj = O-u ._; = (_'j (,5' u -r_ +,5"' -,5'r) = (',,,(,5" u -v _ + g'--,S', - _") (3)

where g, is the thermal strain introduced due to the mismatch in thermal expansion

coefficients between the matrix and fiber, cTy and g' are disturbance stress and strain

fields due to the presence of the fiber and thermal strain, g" is a fictitious eigenstrain (See

Mura, 1982) which is introduced to relate the present problem to the equivalent inclusion

problem. The thermal strain (.g_} is expressed as

_',,j = (a,,- a,.)kTb',j (i,j=l, 2,3). (4)

wherea,, and aj. are the thermal expansion coefficients of the matrix and fiber,

respectively and AT is the temperature change. According to Eshelby the relationship

amon,, the disturbance strain (g'), thermal strain (e,) and eigenstrain (g') is expressed as
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where S

fiber and secant Poisson's rano of" the matrix The equilibrium condition

average stress gives

_o = f% 7-(] -/)_

where f is the fiber volume ratio. Equation (2), (3) and (6) give

f

e' = S(e, _-e') (5)

is Eshelby's secant tensor of tile fiber expressed in terms of dimensions of the

in terms of

(6)

or"- (f-"- I) c7/ (7)

Frorn eqs. (2), (3) and (7) the disturbance strain of the matrix is obtained as

where I is the identity tensor.

i = C-,,'cro - go - f(l - S)(e_ -_ e ")

From eqs. (3) and (8) the eigenstrain is expressed as

e" = y-' (c/- c'°,){C7,'o-0+ (1-/)(s -/),, }

where

(8)

(9)

J = (J- 1)C',,(/-S)+ (ill(S- I)-S} (10)

The average stress in the matrix is calculated from eq. (2) as

_., = _o - fc,,,(s- /)J-'(c/ - c°,)c_\;'o-0
(11)

-JC,,(S -/){(1 - f)J-'(Cj. - C,,)(S - 1)+ [}e,

The average stress in the fibers is calculated from eq. (3) as

%. = C_o+ (1- J)C,, (s -/)d-' (<). - C,,)c2'c_°
(12)

+(1 - f)C,,(S -/){ (1 - f)J-' (Cj. - C,,, )(S - I) + [}a',

The stress-strain relation for the composite is obtained from following relationship
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where

a"-g, =/_.'j +(1-J)e',,, (13)

g,,j = {f% -,-(1 - f)a,,}k7"5,, (i, j=l, 2,3) (14)

From eq. (13), the effective strain of the composite due to the mechanical and thermal

loading is given as

g= {c2 . fJ-'(cj -cm)c2}o-0 +< (is)

Equation (15) is used to predict the thermoelastoplastic behavior of the composite.

Elastol_lastic Analysis

The thermoelstoplastic behavior of the composite is carried out by introducing the

concept of secant properties to the Mori-Tanaka method. The thermoelastoplastic

analysis is separated into the elastic and plastic parts. At this point it is more convenient

to treat the yield condition and plastic analysis with the concept of equivalent stress and

strain. This concept enables to reduce the complex three-dimensional stress-strain

relations to a single relationship.

The composite behaves elasticly until the equivalent average stress of the matrix

from eq. (11) exceeds the yield stress of the matrix.

_" <_crr (16)

• where the equivalent average stress is defined as

Here S..j is the deviatoric stress tensor of the matrix. The secant moduli of the fiber and

matrix and the Eshelby's secant tensors all coincide with the elastic values. The composite
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starts to behave plasticly when the equivalent

stress.

average stress in tile matrix exceeds the yield

cr >cry (18)

The elastoplastic stress-strain behavior of the matrix is expressed as a power law

strain hardening model for the theoretical prediction of composite behavior as an input for

constituent properties. The stress-strain curve of the matrix is expressed as

tl

5= cry +kE.,a" e (19)

where k, and n, are material constants, cry is the elastic limit stress or yield stress and gv is

the equivalent plastic strain of the matrix defined as

L= (20),u _ mpg E nq,g

where g.pq are tile plastic strains of the matrix. The corresponding secant modulus (See

Fig. 2) for a given equivalent plastic strain is express as

E.,{cr r + z-_ ""KIiLm'5" p

E.,_ = (21)
crr + kE .,g v" + E.,g p

Where E is the elastic modulus of the mamx. The corresponding secant Poisson's ratio

increases in tile nonlinear range from its elastic value to the limiting value of 0.5 for an

incompressible material. It can be expressed in terms of the secant modulus (see Nadai,

1950) as

where v

. 1 1 E _
tit

v : - - (g - v,,,)--
" 2 _ E,, --

is the elastic Poisson's ratio of the matrix
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When the matrix yields for a given thermomechanical loading, tile combined

incremental-search method and bisection method is used to find the corresponding

equivalent plastic strain. Then, the secant properties of the matrix are colnputed fiom eqs.

(21) and (22) to calculate the corresponding effective strain of the composite. Following

is the step by step procedure of the method used in computing the equivalent plastic strain

under thermomechanical loading following the matrix yielding.

1. An equivalent plastic strain is first assumed then the corresponding secant

Modulus and Poisson's ratio of the matrix are computed from eqs. (21)

and (22).-

2. From eqs. (11) and (17) the equivalent average stress of the matrix under the

thermomechanical loading is obtained from the secant properties.-

3. If the equivalent average stress of the matrix fiom the above procedure is

matched with the result from equation (19) then the solution is obtained. If not,

then, the above procedure is repeated until the solution is found.

4. Known secant properties of the matrix are used to calculate the effective strain

of the composite from eq. (15) under thermomechanical loading.

Experimental Procedure

The composite material studied in this paper is SiC/AI composite. This composite

material consists of 6061 aluminum matrix reinforced with 140/tm (0 00551 in.) diameter

SCS-2 fiber (Textron Specialty IVlateriats, Inc ). The fiber volume ratio measured from

photomicrographic examination was 0.44. The composite material was made by diffi.lsion

bonding consolidation The specimens, cut from .42ram (0.056in.) thick unidirectional
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eight-ply composite plate, were 12.7ram (0.5in.) wide 152.4mm (6.0in.) long and were

tabbed with 38.1rnln (1.5in.) steel tabs with high strength adhesive for use at elevated

temperatures. Two types or" adhesives were used tbr different temperature ranges. For

the temperature range between 24"C (75°F) to 288"C (550°F), a polyimide adhesive film

(FM36, American Cyanamid) was used; while an aluminum flled condensation type

polyimide adhesive fihn (FM680, American Cyanamid) was used for the temperature

range of 288°C (550°F) to 399°C (750°F). Both types are supported by a glass cloth

carrier for better shear and peel strengths

Elevated temperature tests were conducted in an Instron 1331 servo-hydraulic

testing system equipped with a thermal chamber. The specimens were instrumented with

commercially available strain gages for high temperature applications (WK-gages from

Micro Measurements and RKO-gages from J. P. Technology). The strain readings from

the _oa,,es= were compensated for temperature by using a dummy _oac,e= technique and were

verified by measuring tile axial strain

extensometer. The specimen surface

by a high temperature water-cooled clip-on

temperature was monitored by a K-type

The temperature signal wasthermocouple bonded on the surface with ceramic adhesive.

also used as a feedback to the temperature controller. All tests of the composite were

repeated at three temperatures, 24°C (75°F), 288"C (550"F), and 399°C (750°F).

For micromechanical prediction of thermomechanical behavior of the composite,

the thermomechanical properties of matrix were needed. Selection of the heat treatment

state that corresponds to the in-situ properties of the matrix was a problem because the

matrix properties, particularly those of metal matrix composites, are significantly changed

by the ternperamre history during the manufacturing process. Furthermore, the specimen,
i
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during curing of the adhesive at an elevated temperature,

history similar to that of the annealing process of aluminum.

property change due to the repeated heat treatment is negligible•

experiences a temperature

It is believed that the

It is assumed that the in-

situ properties of the matrix are reasonably close to those of the fully annealed material

(See Pindera and Lin, 1989). Prisrnatic 20.32 cm (8.0 in.) long, 1.27 cm (0.5 in.) wide,

and 0.16 cm (0.062 in) thick aluminurn specimens were prepared. Elevated temperature

tests were conducted on 6061-O aluminum. Stress-strain curves of 6061-O aluminum up

to 5% strain at various temperatures ranging from 24°C (75°F) to 399°C (750°F) are

shown Fig. 3. Tile fiber was characterized by measuring its elastic modulus and tensile

strength following the ASTM D3379-75 standard procedure. The elastic modulus

measured is 400 GPa (58 Msi). The fiber behaves elasticly up to failure and is assumed

isotropic and temperature independent.

The thermal strains of composite and 6061-O aluminum were measured by strain

gages. The specimens were instrumented with WK-00 (Micro Measurements) gages for

measuring longitudinal or transverse thermal strains of the composite and 6061 aluminum

At least three thermocouples were attached to the specimen to monitor temperature. A

programmable hot press (MTP-14, Tetrahedron) was used for controlling temperature

The specimens were heated up to 288°C (550°F) with tile gages atchange step by step.

increments of 14"C

expansivity

(25°F) at half hour intervals to stabilize the telnperature and

of tile specimen. A strain gage bridge conditioner BC-8SSG (KAYE

Instruments) and data logger (Digistrip, KAYE) were used to record time, temperature

and strain. The obtained apparent strains were corrected to give true thermal strains.

c, ,, attached to a reference titanium silicate specimen that has a knownSimilar =a=es are
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stable coefficient of thermal expansion of 0.0300×10 .0/"C (0.017×10 -°/° F). The

reference specimen is included in the test chamber together with the test specimens. The

true thermal strain g,r,e iS obtained by correctin_ the apparent strain c, by the reference

strains as follows (See, Daniel and Ishai, 1994)

,_',.... = s." -(,5." -e' )

where g is the measured =a_e,,,, output from the reference specirnen and _',,

thermal expansion of titaniuln silicate.

curve of 6061 aluminum.

,,')_

is the known

Figure 4 shows tim thermal strain - temperature

Results and Discussion

Constituent materials were thermomechanically characterized and the properties at

room temperature are shown in Tables 1 and 2. The coefficient of thermal expansion

(CTE) of SCS-2 in the table is adopted from the measurement of Tsai and Daniel (1994).

The stress-strain curves of 6061-O aluminum at various temperatures are shown in Fig. 3.

These curves are fitted into a power law strain hardening model which is expressed in eq.

19. The corresponding temperature dependent parameters k, n and o-r are given in Table

3. The elastoplastic analysis was performed using the constituent properties given in the

tables.

The

conditions.

composite behavior was studied under mechanical and thermal loading

According to the elastoplastic analysis based on this model the matrix is

considered as an elastic material with varying secant modulus and secant Poisson's ratio

dep'ending on the amount of plastic deformation. The variations of secant modulus and

Poisson's ratio of the matrix under the transverse tensile loading at room temperature are
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shown in Fig. 5. It can be noticed that the secant modulus of tile matrix decreases t'rom its

elastic value of 68.6 Gpa (10 Msi), while the secant Poisson's ratio increases from its

elastic value of 0.33 toward the limiting value of 0.50. The stresses in the constituents and

effective strain of the fiber are influenced by the change of these matrix secant properties.

Under transverse tensile loading the triaxial state of average stresses in the fiber

and matrix are calculated fiom the model. Figure 6 shows the average stresses in the fiber

and matrix as a function of applied stress. It is noted that all the average stresses in the

matrix and fiber stress o-j2 are tensile while fiber stresses o-.r_ and o-j3 are compressive.

The maximum stresses in the matrix and fiber were along the loading axis. The stresses

vary linearly with applied stress before yielding of the matrix. The model shows that the

average stresses other than o-,2, increase in rate after yielding. As shown itl the figure, the

fiber behaves purely elasticly but the average stresses in the fiber are influenced by the

plastic flow of the matrix and show a similar behavior. Note also that the larger portion of

load is transmitted to the fiber because of its higher stiffness. Although, the stresses along

the x_ and ,v3 axes are an order of magnitude lower than that along the loading axis (,v2),

they contribute to tile plastic deformation of the matrix.

The effective strains were computed for transverse tensile loading to obtain stress-

strain curves at three different temperatures. Figure 7 shows the comparison between the

predicted and experimental stress-strain curves at 24°C (75°F), 288°C (550°F), and

399°C (750°F). It shows that the predicted stress-strain curve at room temperature

matches favorably the experimental one. However, the other two predicted stress-strain

curves at higher temperatures show some deviation from the experiments in the early

stages of yielding. There are three major possible reasons for this deviation• The first is

D-13
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creep. The two high temperature tests were conducted at a rather slow stroke rate at well

above the homologous temperature. The low temperature strengthening mechanism no

longer holds in this case and creep deformation under tensile loading is inevitable. The

composite experiences three different modes of deformation at high temperature: elastic,

plastic, and creep. The creep activity is affected by its prior mechanical deformation.

Usually, plastic and creep behavior of the composite are modeled separately, although

many creep theories obviously were generalized from plasticity. But within certain stress

and temperature ranges when both plastic and creep activities are of comparable

significance, both types of strains must be considered simultaneously to fully assess the

extent of inelastic deformation. To be physically consistent such a consideration requires

inclusion of creep effect in the model. The second possible reason is the-inability of the

model to incorporate the high heterogeneous local deformation field in the ductile matrix

and to account for the local stress field in the initial elastic state and during the subsequent

plastic deformation. In the average field model the complicated local yielding in the

matrix cannot be taken into consideration so that the prediction tends to significantly

underestimate the extent of plastic flow in the case of transverse loading. The third

possible reason is the interfacial effect since high transfer of load from matrix to fiber is

observed. The degradation of interfacial properties also affects the transverse behavior of

the composite. These phenomena are expected to be more pronounced at high

temperatures.

The effective strains of the composite were also computed for longitudinal loading

and were compared with the experiments. Figures 8(a), 8(b) and 8(c) show stress-strain

curves tinder longitudinal loading. The stress-strain curves under transverse loading were
I
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also shown in the figures for comparison purposes. The predictions show better match

with the experiments because the behavior of the composite is dominated by the fiber and

the complex inelastic behavior of the matrix at high temperature plays a smaller role under

longitudinal loading.

!

?

The longitudinal and transverse thermal expansion of the composite was also

computed. The temperature effect on the matrix is fully considered. The material

properties of the matrix at a given temperature were obtained by linear interpolation

between known properties at a few temperatures. Figure 9 shows the thermal expansions

of the composite as functions of temperature. As seen in the figure, both thermal strains

show nonlinear behavior after the temperature reaches a critical

characteristic can be explained qualitatively by following events.

increases from room temperature, both fiber and matrix tends to expand linearly.

temperature This

As the temperature

At a

certain critical temperature the matrix starts to yield due to the thermal internal stresses

caused by the difference in expansion between fiber and matrix. The thermal strain in the

axial direction is more influenced by the fiber and in the transverse direction more by the

matrix because tess constraint is imposed between fiber and matrix due to the plastic flow

of matrix. This leads to reduction of thermal expansion in the longitudinal direction and

increase in the transverse direction.

,[

Summary and Conclusions

The effective strain response of a unidirectional

thermomechanical loading was obtained by an average field theory.

composite under

The fiber is elastic

and temperature independent and the matrix is thermoelastoplastic that is fitted into series

D-15
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of power law strain hardening model. Tile thermoelastoplastic analysis was carried out by

introducing the concept of secant properties to the average field theory.

Under transverse tensile loading the secant properties of the rnatrix and tile

average stresses in the matrix and fiber at room temperature were obtained as a function

of applied stress It is noticed that the larger portion of the load is transferred to the fibers

due to their higher stiffness. The experimental stress-strain curve of the composite at

room ternperature shows good agreement with prediction under transverse tensile loading.

However, the experiments show deviations from predictions at higher temperatures due to

inelastic deforrnanons other than plastic flow (creep), higher heterogeneous local

deformation of the matrix and degradation for interracial properties with temperature.

The experimental stress-strain curves of longitudinal tensile loading at different

temperatures are also compared with predictions Favorable agreements are observed at

all three temperatures. Because, under longitudinal loading, the behavior of tile composite

is dominated by tile fibers and only a small influence of the complex behavior of the matrix

exists.

The experimental longitudinal and transverse thermal strain-temperature curves

were also compared with predictions. They show nonlinearity due to matrix yielding and

plastic flow. The comparison between predictions and experiments shows good

agreement.

The model was found to be a useful tool for predicting thermomechanical behavior

of unidirectional metal matrix composites. However, the model should be improved by

considering additional inelastic effects, such as creep, particularly in the transverse loading

above the homologous temperature of the matrix.
J
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Unidirectional average field composite model subjected to tensile transverse

loading.

Schematic stress-strain curve of power law strain hardening model with

corresponding secant modulus.

Tensile stress-strain curves of 6061-O aluminum at various temperatures.

Thermal strain-temperature curve of 6061-O aluminum.

Variation of secant modulus and secant Poisson's ratio of aluminum matrix as

functions of applied stress subject to transverse loading.

Average stresses in tile fiber and matrix as functions of applied stress subject to

transverse loading.

Stress-strain curves of [908 ] composite subject to transverse loading at various

temperatures

Stress-strain curves of [08 ] composite subject to longitudinal loading compare

with those of [90_ ] composite subject to transverse loading at various

temperatures: (a) 24°C (75°F), (b) 288°C (550°F) and (c) 399°C (750°F).

Longitudinal and transverse thermal strain-temperature curves of unidirectional

SiC/AI composite.
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Table 1 Properties of 6061-O aluminum and SCS-2 fiber at room temperature

Property 6061-O Alurninum SCS-2 Fiber

Elastic modulus, E, GPa (Msi)

Poisson's ratio, v

Yield stress, o-y, MPa (ksi)

Tensile strength, /_,, MPa (ksi)

69.o(lo)

0.33

55.2 (8)

124.1 (18)

399.9 (58)

0.22

3461- 5309

(502 - 770)

Table 2 Coefficients of thermal expansion of 6061-O aluminum and SCS-2 fiber

Temperature, 7",°C ("F) Coefficient of thermal expansion, c_, ,uc/°C (/,c/°F)

24 (75)

121 (250)

177 (350)

288 (550)

450-1300 (842-2372)

23.4(13.0)

23.6(13.1)

23.9(13.3)

24.8(13.5)

2.25(1.25)

2.34(1.30)

2.81(1.56)

4.86(2.70)
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Table 3 Material dependent parameters of matrix

Temperature

24°C (75°F)

121°C (250°F)

177°C (350°F)

288°c (550"F)

399°C (750"F)

Modulus Elastic limit Material Material

stress constant constant

E, GPa (Msi) o-r, MPa (ksi) k ( x 10 -5 ) n ( x 10 .2 )

68.6 (10) 41.4 (6)

63.8 (9.25) 39.3 (5.7)

60.7 (8.8) 37.4 (5.35)

55.2 (8) 33.1 (4.8)

4s3 (7) 15.9 (2..;)

510 45.3

450 45.5

380 45.6

6.62 45.8

6.12 46.0

Table 4 Properties of SiC/AI composite at room temperature

Property SiC/AI Composite

Longitudinal modulus, E,, GPa (Msi)

Transverse modulus, E2, GPa (Msi)

Major Poisson's ratio, v,2

Longitudinal tensile strength, F_, MPa (ksi)

Longitudinal coefficient of thermal expansion, a_,/lc/°C

(tt_'l °F)

Transverse coefficient of thermal expansion, or:,/la-/°C t,ue'/°F

Fiber volume ratio, f;

206.9 (30.0)

113.8 (16.5)

0.27

1620.0 (235.0)

5.94 (3.3)

16.0 (8.9)

0.44

,i

•;i _
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Appendix

The secant moduli tensor of fiber (Cj.)and

matrix forms.

matrix (C.,) are expressed by 6x6

-Cflll I Cj..1122 Cf1133

('-'J'221 I ('j 2222 (" 'i"2233

('./'3311 (") 33222 ('/3333

0

0 Cf2323

Cf3131 _

(A. 1)

where
(1- vr)E j.

"v

(-'j tL_L= CI'-222 = (/n33 = (1 - 2 Vj )( Vy + 1)

v;.Ej
"v

Cf_t2__ = Cjt _33= Cj._..__ = Cs2_.n = Cs33_, = ( j33._2= (1 - 2 vy )( v s + 1)

E l •

Cj.,z,2 : C)._3z3 = C c3,3t - 2( v/+ 1)

(A.2)

"m

(f_mllll (_?m1122 _m1133

_;m2211 (_m2222 (_m2233

67,n3311 (_,n33222 _'m3333

_?m1212

0

0 _;m2323

1

Cm3131.

(A.3)

where

' ml _°

(5- <.,)E;
(',,. = C.,.__= ('.,_ : (l - 2 v2,)( vL + 1)

v'E"
Ill s_l

= ('.,13 = C.,._l = (-'.,23 = C.,31 = C,,,3_.= (1 - 2 v._ )( v._;+ 1)

E;;
C.,4_ = C.,s5 = C.,66 - 2( v_,,+ 5)
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where

and

Eshelby's secant tensor (3) is expressed as

F'_'I[II

_'2211

_v3311

S=

SII22 "_'1133

,5'2222 $2233

$3=2 S.33

31212

0

0

_'2323

(5 - 4 C,)
' S -_1111 _ _o

.... 80- v,;i)

S1122

SII33

$3333 _- 0

(4v_;-1)
S2211 --

8(1- v._)
V s

m

m 32233 _

20- v,,_)

"_'3311 = "5'3322 = 0

(3 - 4 vl;̀ )
31212 --

2(1- v2)

1

The thermal strains (c,,g,) have the following form

_',=1 _',_,. _',._2. _',., O. O, O}

$3131

(A.5)

(A.6)

(A.7)

g,={e-;,,, g,2_.,e-;,,,o, o, o} (A.8)
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